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Abstract. This paper is based on the author’s thesis, “Pattern recognition
based on naive canonical correlations in high dimension low sample size”. This
paper is concerned with discriminant analysis for multi-class problems in a High
Dimension Low Sample Size (hdlss) context. The proposed discrimination
method is based on canonical correlations between the predictors and response
vector of class label. We investigate the asymptotic behavior of the discrimina-
tion method, and evaluate bounds for its misclassification rate.

1. Introduction

Discriminant analysis is a statistical method by which a new data with unknown
class label is classified into one of the previously known classes. Fisher’s well-known
linear discriminant function for K-class problems is the solution to his paradigm:
maximize the between-class variance while minimizing the within-class variances.
See Fisher [6], and Rao [10] for the general multi-class setting. Especially, for the
special case of two-class problems, we assume that the two populations, C1 and C2,
have multivariate normal distributions which differ in their means µ1 and µ2, but
share a common covariance matrix Σ. For X from one of the two classes, Fisher’s
linear discriminant function

(1) g(X) =

(
X − 1

2
(µ1 + µ2)

)T

Σ−1(µ1 − µ2)

assigns X to C1 if g(X) > 0, and to C2 otherwise. If the random vectors have equal
probability of belonging to either of the two classes, then the misclassification rate
of (1) is shown to be [Φ (−∆2/2) + {1− Φ (∆2/2)}] /2, where Φ is the standard
normal distribution function and ∆ is the Mahalanobis distance between the two
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16 M. TAMATANI

populations: ∆ =
√

(µ1 − µ2)
T Σ−1 (µ1 − µ2). A sample version of (1) is

(2) ĝ(X) =

(
X − 1

2
(µ̂1 + µ̂2)

)T

Σ̂−1(µ̂1 − µ̂2),

where µ̂1, µ̂2 and Σ̂ are appropriate estimates for the corresponding population
parameters of the two classes. (2) can be applied to data sets in the general setting
where the sample size n is much larger than the dimension d. However, for problems
with a large dimension, it has been shown that Fisher’s linear discriminant function
performs poorly due to diverging spectra. Further for High Dimension Low Sample
Size (hdlss) problems, namely n ≪ d, it is not possible to directly define Fisher’s

linear discriminant function since the sample covariance matrix Σ̂ in (2) becomes
singular when the dimension d exceeds the sample size n.
Several discriminant rules have been proposed for the hdlss context which over-

come the problem of singularity of Σ̂ in different ways: Dudoit et al. [4] proposed
diagonal linear discriminant analysis which only uses the diagonal elements of the
sample covariance matrix, Srivastava and Kubokawa [12] proposed a discriminant
function based on the Moore-Penrose inverse, Ahn and Marron [1] constructed dis-
criminant function based on the Maximal Data Piling (MDP) direction vectors, and
Aoshima and Yata [2] considered a discriminant rule based on second moments in
conjunction with geometric representations of high-dimensional data. In this pa-
per, we focus on the ‘diagonal’ approach of Dudoit et al. [4] which has special
appeal since it is conceptually simpler than the competitors.
For two-class problems in a hdlss setting, Bickel and Levina [3] and Fan and

Fan [5] investigated the asymptotic behavior of the naive Bayes rule, and calcu-
lated bounds for its misclassification rate. Tamatani, Koch and Naito [13] defined
a modification of the canonical correlation matrix that is suitable for classification
problems, and studied the asymptotic behavior of the eigenvector and the dis-
criminant direction of the modified canonical correlation matrix in the context of
two-class problems. Also, for multi-class problems in a hdlss context, Tamatani,
Naito and Koch [14] proposed a naive Bayes rule in a general multi-class setting
and investigated its asymptotic properties for high-dimensional data when both
the dimension d and the sample size n grow.
Throughout this paper we focus on hdlss data from K(≥ 2) classes, that is, we

assume that the dimension d of the data is much bigger than the sample size n.
Our discriminant approach is based on canonical correlations, and in particular on
a modification of the canonical correlation matrix suitable for vector-valued class
labels from K classes. In this framework, we replace the covariance matrix by its
diagonal counterpart as discussed in Dudoit et al. [4], Bickel and Levina [3] and
Fan and Fan [5]. We call such a matrix the naive canonical correlation matrix,
and observe that this matrix plays an important role in the present theory. The
K − 1 eigenvectors belonging to K − 1 non-zero eigenvalues of the estimated naive
canonical correlation matrix yield discriminant directions which inform our choice
of a discriminant function for K classes. For this setting we study the asymptotic
behavior of the eigenvectors and associate discriminant directions.
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For hdlss data from K multivariate normal classes, we derive an upper bound
for the misclassification rate of the proposed multi-class discriminant function.
Our asymptotic results for the misclassification rate are divided into two disjoint
types depending on the precise growth rates of d and n. Depending on the two
distinct growth rates, we also develop hdlss asymptotic results for estimators of
the eigenvectors and discriminant directions.
The paper is organized as follows. In Section 2, we review a relationship between

multi-class discriminant function and canonical correlations for K classes. Further,
we focus on the gene expression microarray data, which is a typical example of
hdlss data. For hdlss problems, we replace Σ by diagΣ, and obtain a corre-
sponding criterion, which leads to a natural derivation of a multi-class version of
the naive Bayes rule. Section 3 details the asymptotic behavior of the eigenvectors
of the estimated naive canonical correlation matrix and the associated discriminant
directions in a hdlss setting under general distributional assumptions. We derive
an upper bound for the asymptotic misclassification rate of the proposed multi-
class discriminant function under assumptions of normal distribution. In Section
4, we summarize our results. Proofs of all mathematical results are omitted.

2. Discriminant function based on naive canonical correlation

We consider the K-class discrimination problem. Let Cℓ (ℓ = 1, . . . , K) be d-
dimensional populations with different means µℓ and common covariance matrix
Σ. For a random vector X from one of the K classes, let πℓ be the probability that
X belongs to Cℓ. Let Y be the K-dimensional vector-valued class label with ℓth
entry 1 if X belongs to Cℓ and 0 otherwise, so P (Y = eℓ) = πℓ, and

∑K
ℓ=1 πℓ = 1.

In canonical correlation analysis of two vectors X and Y , with Y the vector-
valued labels and µ =

∑K
ℓ=1 πℓµℓ, the matrix

(3) C̃ = Σ−1/2E
[
(X − µ)Y T

] {
E
[
Y Y T

]}−1/2

plays an important role. From the definition of (X,Y ) it follows that E[Y Y T ] =
Π and E

[
(X − µ)Y T

]
= M0Π where Π = diag(π1, . . . , πK) and M0 = [ µ1 −

µ · · · µK − µ ]. Using M =
∑K

ℓ=1 πℓ(µℓ − µ)(µℓ − µ)T = M0ΠM
T
0 , we have

C̃C̃T = Σ−1/2MΣ−1/2. If we put b̃ = Σ−1/2p̃, where p̃ is a solution to the eigenvalue

problem C̃C̃T p̃ = λ̃p̃ with λ̃ > 0, then the vector b̃ is the maximizer of the criterion

(4) J̃(b) =
bTMb

bTΣb

over vectors b. Note that (4) is nothing other than the criterion which yields
Fisher’s linear discriminant rule for the multi-class setting. In particular, the rank

of C̃C̃T is K − 1, so the K − 1 eigenvectors [ p̃1 · · · p̃K−1 ] belonging to K − 1
non-zero eigenvalues should be used for constructing the discriminant directions

B̃ ≡ [ b̃1 · · · b̃K−1 ] = Σ−1/2[ p̃1 · · · p̃K−1 ].

Using the discriminant directions B̃, we want to define a discriminant function g̃
for classifying new observations X whose class is unknown. For α ∈ {1, . . . , K−1},
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put Zα(X) = b̃
T

αX, and define the vector Z(X) = [Z1(X), . . . , ZK−1(X)]T =

B̃TX. For Z(X) and Cℓ, define the Mahalanobis distance between Z(X) and Cℓ
by ∆ℓ(Z(X)) =

√
(Z(X)− νℓ)TΣ

−1
ℓ (Z(X)− νℓ), where νℓ = B̃Tµℓ and Σℓ =

B̃TΣB̃. Hence ∆ℓ(Z(X))2 can be rewritten as

∆ℓ(Z(X))2 = (X − µℓ)
T B̃(B̃TΣB̃)−1B̃T (X − µℓ) .(5)

Using (5), we now derive the multi-class linear discriminant function g̃ as the
minimizer of the Mahalanobis distance, and let

g̃(X) = argmin
ℓ∈{1,...,K}

∆ℓ(Z(X))2.(6)

Note that B̃ depends on Σ and that (6) reduces to the Fisher’s linear discriminant
function in the case of 2-class by considering the sign of ∆1(Z(X))2−∆2(Z(X))2.

2.1. HDLSS setting. Gene expression microarray data is a form of high-
throughput biological data providing relative measurements of mRNA levels for
genes in a biological sample. One important application of gene expression microar-
ray data is the classification of new samples into known classes. In the recent years,
many laboratories have collected and analyzed microarray data, and such data have
been appeared in public databases or on web sites. Indeed, the data collected from
gene expression microarrays consist of thousands or tens of thousands of genes that
constitute features: leukemia data (Golub et al. [7], K = 2, n = 73, d = 7129),
lung cancer data (Gordon et al. [8], K = 2, n = 184, d = 12433), prostate cancer
data (Singh et al. [11], K = 2, n = 134, d = 12600), the small round blue cell
tumors (SRBCT) data (Khan et al. [9], K = 4, n = 83, d = 2308), and so on.
These data, often called the High Dimension Low Sample Size (hdlss) data, are
characterized with large number of dimensions d and a relatively small number of
sample size n, that is, we can write n ≪ d.
To establish asymptotic theory in this paper, we consider an asymptotic situation

in which the dimension d and the sample size n both approach infinity in such a
way that d is much faster than n:

n = o(d) as n, d −→ ∞.

2.2. Difficulties in HDLSS. The hdlss data involves serious problems. Let
X i (i = 1, . . . , n) be independently and identically distributed (i.i.d.) d-dimensional
random vectors with the covariance matrix Σ. The usual estimates of Σ is defined
as

(7) Σ̂ =
1

n− 1

n∑
i=1

(X i − µ̂)(X i − µ̂)T ,

where µ̂ = (1/n)
∑n

i=1X i is the mean vector of the data {X i}1≤i≤n. When we
assume that the data satisfies n ≪ d, (7) is a singular matrix because the rank of
(7) is at most n− 1. Hence, it means that the sample version of (3) is not directly
applicable in the case of n ≪ d.
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2.3. Naive canonical correlations. In the hdlss two-class discrimination set-
tings, the sample covariance matrix Σ̂ is singular as was discussed in the previous
subsection. For a population framework, it therefore does not make sense to define
a discriminant function based on the within-class covariance matrix Σ. To over-
come such a difficulty, we first require a suitable framework for the population. We
define the naive canonical correlation matrix C and vectors bα and pα by

C = D−1/2E
[
(X − µ)Y T

] {
E[Y Y T ]

}−1/2
,

where D = diagΣ, bα = D−1/2pα and pα is eigenvector of the matrix CCT cor-
responding to the αth largest eigenvalue λ∗

α. Put P = [ p1 · · · pK−1 ]. The
discriminant directions

B ≡ [ b1 · · · bK−1 ] = [ D−1/2p1 · · · D−1/2pK−1 ] = D−1/2P

can now be seen to maximise the analogous naive criterion

J(b) =
bTMb

bTDb
.(8)

Note that Σ in (4) has been replaced by the diagonal matrix D in (8).

2.4. Discriminant function in HDLSS. The corresponding discriminant func-
tion g is therefore

g(X) = argmin
ℓ∈{1,...,K}

(X − µℓ)
T B(BTDB)−1BT (X − µℓ) .(9)

Note that Σ has been replaced by D both in (4) and (5) to yield (8) and (9)
respectively.
It is worth noting that for K = 2, the discriminant function g reduces to the

naive Bayes discriminant function discussed in Bickel and Levina [3].

3. Asymptotic Theory

In this section, we evaluate the asymptotic behavior of the estimators of pα and
bα in a hdlss setting under general assumptions about the underlying distributions.
In addition, we derive upper bounds for the misclassification rate of multi-class
discriminant function under d-dimensional normal populations.

3.1. Preliminaries. Consider data (Xℓi,Y ℓi) (ℓ = 1, . . . , K; i = 1, . . . , nℓ), where
the independently distributed Xℓi are from K disjoint classes, and the Y ℓi are
independent realizations of vector labels

Y ℓi = (Yℓi1, . . . , YℓiK)
T with Yℓij =

{
1 ℓ-th component,
0 otherwise.

Let X and Y be matrices defined by X = [ X11 · · · XKnK
] and Y =

[ Y 11 · · · Y KnK
]. Then X is of size d × n, and Y is of size K × n, where

n =
∑K

ℓ=1 nℓ.
Next we derive an empirical version of C and its left eigenvectors pα. Define

estimators µ̂ℓ and Σ̂ of µℓ and Σ by µ̂ℓ = (1/nℓ)
∑nℓ

i=1Xℓi and Σ̂ = (1/K)
∑K

ℓ=1 Ŝℓ,
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where Ŝℓ = {1/(nℓ − 1)}
∑nℓ

i=1(Xℓi − µ̂ℓ)(Xℓi − µ̂ℓ)
T . Using the centering matrix,

a natural estimator for C is

Ĉ = D̂−1/2M̂0N
1/2,(10)

where D̂ = diagΣ̂, In is the n × n identity matrix, 1n is the n-dimensional vector

of ones, M̂0 = [ µ̂1 − µ̂ · · · µ̂K − µ̂ ] and N = diag(n1/n, . . . , nK/n). Hence we

obtain the expression ĈĈT = D̂−1/2M̂D̂−1/2, where M̂ = M̂0NM̂T
0 .

Since the rank of ĈĈT is K− 1, we use the K− 1 eigenvectors p̂α of ĈĈT corre-
sponding to the K − 1 non-zero eigenvalues in the definition of the discrimination

directions b̂α, and put b̂α = D̂−1/2p̂α (α = 1, . . . , K − 1). We note that these b̂α
can be obtained as the maximizers of the function

Ĵ(b) =
bTM̂b

bT D̂b
.

Put B̂ = [ b̂1 · · · b̂K−1 ] = [ D̂−1/2p̂1 · · · D̂−1/2p̂K−1 ] ≡ D̂−1/2P̂ , then ĝ, defined
by

ĝ(X) = argmin
ℓ∈{1,...,K}

(X − µ̂ℓ)
T B̂(B̂T D̂B̂)−1B̂T (X − µ̂ℓ) ,

is a natural estimator of g in (9), and this ĝ is our proposed discriminant function
in the hdlss multi-class setting. To elucidate the asymptotic behavior of ĝ, it is

necessary to develop first asymptotics for B̂ as well as P̂ in a hdlss setting.
Throughout this paper, we make the assumption that the sample size of each of

the K classes satisfies c ≤ nℓ/n for some positive constant c and ℓ = 1, . . . , K.
In what follows we use the asymptotic notation:

(i) an,d = O(bn,d) to mean that an,d/bn,d → M ∈ (0,∞) as n, d → ∞.
(ii) an,d = o(bn,d) to mean that an,d/bn,d → 0 as n, d → ∞.

The definition of o is usually included in that of big O, however we distinguish
these cases in this paper.
In order to evaluate the asymptotic behavior of p̂α, we need the following defi-

nition and conditions:

Definition 3.1. Let x ∈ Rd be a non-stochastic unit vector, and let x̂, a vector of
length one, denote an estimate of x based on the sample of size n . If

x̂Tx
P−→ 1 as n, d → ∞,

where
P−→ refers to convergence in probability, then x̂ is hdlss consistent with x.

Condition A. Let X = [ X11 · · · XKnK
] be a data matrix from K classes. Each

column ofX can be written asXℓi = µℓ+εℓi, where εℓi (ℓ = 1, . . . , K; i = 1, . . . , nℓ)
are i.i.d. copies of an underlying random vector ε with mean 0 and covariance
matrix Σ.

Condition B. (Cramér’s condition) There exist constants ν1, ν2,M1 and M2

such that each component of ε = (ε1, . . . , εd)
T satisfies

E[|εj|m] ≤ m!Mm−2
1 ν1/2 and E[|ε2j − σjj|m] ≤ m!Mm−2

2 ν2/2
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for all m ∈ N.

Condition C. Let nℓ → ∞ (for ℓ = 1, . . . , K), d → ∞, log d = o(n), n = o(d).
There exists a positive sequence Cd depending only on the dimension d such that
d/(nCd) → ξ, where ξ ≥ 0.

Condition D. All eigenvalues λ∗
α of CTC are simple (so λ∗

1 > · · · > λ∗
K) and

satisfy

λ∗
α = O(Cd) and

λ∗
α − λ∗

α+1

Cd

> ξ for α = 1, . . . , K − 1,

and Cd as in Condition C.

Condition E. As d → ∞, µT
ℓ D

−1µℓ = O(Cd), and there exists δ ∈ (0, 1) such
that µT

ℓ D
−1µk = O(Cδ

d) for all k, ℓ ∈ {1, . . . , K}, and Cd as in Condition C.

Condition F. For k, ℓ ∈ {1, . . . , K}, and k ̸= ℓ,

lim
d→∞

√
πk

µT
kD

−1µk

Cd

̸= lim
d→∞

√
πℓ
µT

ℓ D
−1µℓ

Cd

,

and Cd as in Condition C.

We note that the positive sequence Cd will play an important role in the subsequent
discussions since it controls the gap between d and n.

3.2. Asymptotic results for eigenvectors. To establish the asymptotic be-
haviour of the estimators p̂α, we start with an asymptotic expansion of the matrix

ĈT Ĉ/Cd. In what follows, Θ denotes the parameter space for our multi-class set-
ting:

Θ =

{
(µ1, . . . ,µK ,Σ)

∣∣∣∣ mink ̸=ℓ(µk − µℓ)
TD−1(µk − µℓ) ≥ Cd,

λmax(R) ≤ b0, min1≤j≤d σjj > 0

}
,

where R is the correlation matrix R = D−1/2ΣD−1/2, λmax(R) is the largest eigen-
value of R and σjj is jth diagonal entry of Σ.

Lemma 3.2. Suppose that Condition A – Condition E hold. Then for all

parameters θ ∈ Θ, ĈT Ĉ/Cd can be expanded as

ĈT Ĉ

Cd

=
CTC

Cd

+ ξ(IK − Π1/21K1
T
KΠ

1/2) + 1K1
T
KoP (1).

If ξ = 0, which means d = o(nCd) by Condition C, then the above expansion
becomes very simple.
To proceed with the theoretical considerations, we need to show that the K − 1

eigenvalues of CTC/Cd + ξ(IK − Π1/21K1
T
KΠ

1/2) are simple in the case of d =
O(nCd), that is, ξ > 0.
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Lemma 3.3. Let λα/Cd be αth largest eigenvalue of CTC/Cd + ξ(IK −
Π1/21K1

T
KΠ

1/2). Suppose that the λα/Cd satisfy Condition D, and that d =
O(nCd). Then for all parameters θ ∈ Θ,

λα = O(Cd) and
λα

Cd

>
λα+1

Cd

for α = 1, . . . , K − 1.

In this paper, eigenvectors have unit length. In addition, we assume that the
first entry of each eigenvector is positive. This assumption avoids any ambiguity
about the direction of the eigenvector. Using Lemmas 3.2 and 3.3, we can now
describe the asymptotic behavior of p̂α as follows.

Theorem 3.4. Suppose that Condition A – Condition D hold. Then, for all
parameters θ ∈ Θ,

p̂T
α

Ĉγα

||Ĉγα||
= 1 + oP (1) for α = 1, . . . , K − 1,

where γα is eigenvector of CTC/Cd + ξ(IK −Π1/21K1
T
KΠ

1/2) belonging to the non-
zero eigenvalue λα.

To gain further insight in the behavior of the p̂α, we define the vectors

pα =
Cγα

||Cγα||
for α = 1, . . . , K − 1

by referring to Theorem 3.4. Under the assumption that d = O(nCd), one can show
that the vectors p̂α are consistent estimators for the pα. We have the following
theorem and corollary:

Theorem 3.5. Suppose that Condition A – Condition E hold, and that d =
O(nCd). Moreover, assume that λα/Cd → κα and γT

αΠ
1/21K → ηα. Then for all

parameters θ ∈ Θ,

P̂ TP
P−→

κβδαβ − ξ(δαβ − ηαηβ)
√
κα

√
κβ − ξ(1− η2β)


1≤α,β≤K−1

,

where δαβ is the Kronecker delta-function.

Corollary 3.6. Suppose that Condition A – Condition E hold, and that d =
o(nCd). Then for all parameters θ ∈ Θ,

P̂ TP
P−→ IK−1.

Corollary 3.6 states that if d = o(nCd) is satisfied, then p̂α is hdlss consistent
with pα. Furthermore, p̂α is asymptotically orthogonal to pβ for α ̸= β. On the
other hand, if d = O(nCd) is satisfied, then the angle between p̂α and pβ converges
to a particular non-zero angle for all α and β.
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3.3. Asymptotic results for discriminant directions. Next we turn to the

asymptotic behavior of the vectors b̂α. We define normalized versions of direction
vectors for discrimination by

b̂
∗
α =

D̂−1/2p̂α√
p̂T
αD̂

−1p̂α

, b∗α =
D−1/2pα√
pT
αD

−1pα

(11)

for α = 1, . . . , K − 1. Then we have the following theorem and corollary:

Theorem 3.7. Suppose that Condition A – Condition E hold, and that
d = O(nCd). Put σmax = max1≤j≤d σjj and σmin = min1≤j≤d σjj. Then for all
parameters θ ∈ Θ,

b̂
∗T
α b∗β ≤

b∗Tα b∗β
√

κα − ξ(1− η2α)√
κα − ξ(1− η2α) (1− σmin/σmax)

(1 + oP (1)),

b̂
∗T
α b∗β ≥

b∗Tα b∗β
√

κα − ξ(1− η2α)√
κα − ξ(1− η2α) (1− σmax/σmin)

(1 + oP (1)).

Corollary 3.8. Let B̂∗ = [ b̂
∗
1 · · · b̂

∗
K−1 ] and B∗ = [ b∗1 · · · b∗K−1 ]. Suppose

that Condition A – Condition E hold, and that d = o(nCd). Then for all
parameters θ ∈ Θ,

B̂∗TB∗ −B∗TB∗ P−→ O.

Theorem 3.7 states that the upper and lower bounds of b̂
∗T
α b∗β are determined by

the ratio of σmax and σmin. For example, if all diagonal elements of Σ are equal,
then

b̂
∗T
α b∗α − b∗Tα b∗α

√
1− ξ

κα

(1− η2α)
P−→ 0.

If d = o(nCd) is satisfied, then the angle between b̂
∗
α and b∗α converges to 0 in

probability, which shows that the b̂
∗
α are hdlss consistent with the corresponding

b∗α. However, b̂
∗
α and b∗β may not necessarily be orthogonal for α ̸= β, since

b̂
∗T
α b∗β −

pT
αD

−1pβ√
pT
αD

−1pα

√
pT
βD

−1pβ

= oP (1).

3.4. Upper bound for misclassification rate. In this section, we study the
misclassification rate of our method in a multi-class setting. The misclassification
rate for two classes has been investigated in Fan and Fan [5] who derived an upper
bound for the misclassification rate in a hdlss setting.
Specifically, for the results in this section we will assume that Condition A’

holds.

Condition A’. LetX = [ X11 · · · XKnK
] be a data matrix fromK classes. Each

column of X can be written as Xℓi = µℓ + εℓi, where εℓi are i.i.d. random vectors
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distributed as Nd(0,Σ), d-dimensional normal distribution with mean vector 0 and
covariance matrix Σ.

In addition to Condition A, Condition A’ makes statements about the distri-
bution of X.
Suppose that X belongs to class Ck. The misclassification rate of ĝ, an estimate

of the discriminant function g in (9), for class Ck is defined as

Wk(ĝ, θ) = P (ĝ(X) ̸= k |Xℓi, ℓ = 1, . . . , K; i = 1, . . . , nℓ )

= 1−
∫

D̂k

1√
|2πΣ̂k|

exp

(
−1

2
zT Σ̂−1

k z

)
dz

≡ 1− ΦK−1

(
D̂k; 0, Σ̂k

)
,

where Σ̂k is the transformed covariance matrix of size (K − 1) × (K − 1) which

is defined in Tamatani, Naito and Koch [14], and D̂k is the (K − 1)-dimensional
region given by

D̂k =
{
z ∈ RK−1

∣∣∣ zj < d̂kα, α ∈ {1, . . . , K − 1}
}
,

where d̂kα = I(α < k)d̂kα + I(α ≥ k)d̂k(α+1) and

d̂kα =
(µk − (µ̂k + µ̂α)/2)

T B̂(B̂T D̂B̂)−1B̂T (µ̂k − µ̂α)√
(µ̂k − µ̂α)

T B̂(B̂T D̂B̂)−1B̂TΣB̂(B̂T D̂B̂)−1B̂T (µ̂k − µ̂α)
.

We note that the region D̂1 results in the interval obtained in Theorem 1 in Fan
and Fan [5] for their special case of K = 2.
Let Θk be the parameter space associated with the misclassification rate of ĝ for

class Ck:

Θk =

{
(µ1, . . . ,µK ,Σ)

∣∣∣∣ minℓ ̸=k(µℓ − µk)
TD−1(µℓ − µk) ≥ Cd,

λmax(R) ≤ b0,min1≤j≤d σjj > 0

}
.

In addition to the region D̂k we also require the following region and quantities
in Theorem 3.9:

Dk,O =
{
z ∈ RK−1

∣∣ zα < dkα(1 + oP (1)), α = 1, . . . , K − 1
}
,

where dkα = I(α < k)dkα + I(α ≥ k)dk(α+1),

dkα =
SkαΓ

[
ΓT

{
CTC + (d/n)(IK − Π1/21K1

T
KΠ

1/2)
}
Γ
]−1

ΓTQT
kα√

λmax(R)
√

QkαΓ
[
ΓT

{
CTC + (d/n)(IK − Π1/21K1

T
KΠ

1/2)
}
Γ
]−1

ΓTQT
kα

,
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Γ = [γ1, . . . ,γK−1], Skα = Mkα/2 + (d/n)skαΠ
−1/2, Qkα = Mkα + (d/n)qkαΠ

−1/2,

Mkα = (µk − µα)
TD−1/2C,

skα = [s1, . . . , sK ] , sℓ = πℓ −
1

2
{I(ℓ = k) + I(ℓ = α)} ,

qkα = [q1, . . . , qK ] , qℓ = I(ℓ = k)− I(ℓ = α).

Furthermore, we need the following region in Corollary 3.10:

Dk,o =
{
z ∈ RK−1

∣∣ zα < d∗kα(1 + oP (1)), α = 1, . . . , K − 1
}
,

where d∗kα = I(α < k)d∗kα + I(α ≥ k)d∗k(α+1) and

d∗kα =

√
MkαΓ (ΓTCTCΓ)−1 ΓTMT

kα

2
√
λmax(R)

.

We have the following theorem and corollary using Theorem 3.4.

Theorem 3.9. Suppose that Condition A’ and Condition B – Condition F
hold, and that d = O(nCd). Then, for all parameters θ ∈ Θk,

Wk(ĝ, θ) ≤ 1− ΦK−1

(
Dk,O; 0, Σ̂k

)
.

Corollary 3.10. Suppose that Condition A’ and Condition B – Condition
F hold, and that d = o(nCd). Then, for all parameters θ ∈ Θk,

Wk(ĝ, θ) ≤ 1− ΦK−1

(
Dk,o; 0, Σ̂k

)
.

Note that Theorem 3.9 and Corollary 3.10 extend Theorem 1 in Fan and Fan [5]
to the general multi-class setting considered in this paper.

4. Conclusion

In this paper, we discussed the asymptotic theories of the multi-class linear
discriminant function in a hdlss context. In Section 2, we constructed the linear
discriminant function based on naive canonical correlation in the context of multi-
class problem. In Section 3, we derived the asymptotic behavior of eigenvectors
of the naive canonical correlation matrix corresponding to positive eigenvalues.
In the asymptotic theory, both the dimension d and the sample size n grow, and
provided d does not grow too fast, we showed that all eigenvectors and discriminant
directions are hdlss consistent.
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