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Abstract. This paper is a summary of the author’s doctral dissertation. Firstly,
we introduce a new notion “Čech-complete map”, and investigate some its basic
properties, invariance under perfect maps, characterizations by compactifications
of Čech-complete maps and relationships with other maps. Secondly, we intro-
duce new notions of p-maps and M -maps, and investigate some basic properties,
which are extensions of corresponding properties of p-spaces and M -spaces. Fi-
nally, we prove the existence of fibrewise uniformities on some metrizable maps,
and study the relations between the completeness induced by a trivial metric
and the one defined by fibrewise uniformities. Further, we discuss the relations
between completely metrizable maps and Čech-complete maps.

1. Introduction

The study of General Topology is concerned with the category TOP of topo-
logical spaces as objects, and continuous maps as morphisms. The concepts of
spaces and maps are equally important and one can even look at a space as a
map from this space onto a one-point space and in this manner identify these two
concepts. With this in mind, a branch of General Topology which has become
known as General Topology of Continuous Maps, or Fibrewise General Topology,
was initiated. Fibrewise General Topology is concerned most of all in extending
the main notions and results concerning topological spaces to continuous maps. As
the generalization of the main spaces in General Topology, (locally) compact maps,
compactifications of maps, paracompact maps, metrizable type maps (MT -maps,
for short), (completely) trivially metrizable maps (TM -maps, for short) and k-
maps are defined and mainly studied by B. A.Pasynkov, I.M. James, D.Buhagiar
and T. Miwa in Fibrewise General Topology. In order to generalize the uniformity
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in TOP , I.M. James ([13]) studied fibrewise uniform space (X, Ω) by using en-
tourage filter Ω and Konami-Miwa ([14, 15]) studied it by using covering system
µ (say, fibrewise covering uniform space and denoted by (X,µ)), and proved the
equivalence of fibrewise uniform spaces (X, Ω) and (X,µ(Ω)) where µ(Ω) is the
fibrewise covering uniformity induced by Ω.

In this paper, we continue to extend some main concepts of General Topology
to Fibrewise Topology and study the uniformities on TM-maps, which enrich the
study of it. In section 2, we summarize notions and notations and terminologies
used in this paper. In section 3, we introduce a new notion “Čech-complete map”,
and investigate some its basic properties, invariance under perfect maps, character-
izations by compactifications of Čech-complete maps and relationships with other
maps. In section 4, we introduce new notions of p-maps and M -maps, and inves-
tigate some basic properties, which are extensions of corresponding properties of
p-spaces and M -spaces. In section 5, we prove the existence of fibrewise uniformi-
ties on some metrizable maps, and study the relations between the completeness
induced by a trivial metric and the one defined by fibrewise uniformities. Further,
we discuss the relations between completely metrizable maps and Čech-complete
maps.

Since this paper is a summary, we omit all of the proofs.

2. Preliminaries

In this section, we refer to the notations used in the latter sections, further the
notions and notations in Fibrewise Topology.

Throughout this paper, we assume that all spaces are topological spaces and
all maps and projections are continuous. Also we use the abbreviation nbd(s) for
neighborhood(s). We use the notation (B, τ) for a topological space B with a
topology τ , which is the fixed base space. For a space X and a point x ∈ X,
N(x) is the family of all open nbds of x. The symbols N, Z, Q and R are the
sets of all natural numbers, all integers, all rational numbers and all real numbers,
respectively, and I is the unit interval.

For a projection p : X → B and each b ∈ B, the fibre over b is the subset
Xb = p−1(b) of X. Also for each subset W of B, we denote XW = p−1(W ). For
W ⊂ B, we use the notation XW ×XW = X2

W and X ×X = X2. For D,E ⊂ X2,
D ◦ E = {(x, z)| there exists y ∈ X such that (x, y) ∈ D, (y, z) ∈ E} and D(x) =
{y|(x, y) ∈ D}. For a family U of subsets of X and A ⊂ X, U|A = {U ∩A|U ∈ U}.
Definition 2.1. A projection p : X → B is called a Ti-map, i = 0, 1, 2, if for all
x, x′ ∈ X such that x 6= x′ and p(x) = p(x′), the following condition is respectively
satisfied:

(1) i = 0: at least one of the points x, x′ has a nbd in X not containing the
other point;

(2) i = 1: each of the points x, x′ has a nbd in X not containing the other
point;

(3) i = 2: the points x and x′ have disjoint nbds in X.
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A T2-map is also called Hausdorff.

Definition 2.2. A projection p : X → B is called completely regular (resp. regular),
if for every point x ∈ X and every closed set F in X such that x /∈ F , there
exists a nbd W ∈ N(p(x)) such that the sets {x} and F are functionally separated
(resp. nbd separated) in XW . A completely regular (resp. regular) T0-map is called
a Tychonoff or a T3 1

2
- (resp. a T3-) map.

It is obvious that every Tj-map is a Ti-map for j, i = 0, 1, 2, 3, 31
2

and i ≤ j.

Definition 2.3. Let p : X → B be a projection. The map p is called normal if for
every O ∈ τ , every b ∈ O and every pair of disjoint closed sets F and H in XO,
there exists W ∈ N(b) with W ⊂ O such that F and H are nbd separated in XW .
A normal T3-map is called a T4-map.

Proposition 2.4. If the space X is (a) a Ti-space, i = 0, 1, 2, (b) regular, (c)
completely regular, then the projection p : X → B is respectively (a) a Ti-map,
i = 0, 1, 2, (b) regular, (c) completely regular.

Proposition 2.5. If the space B and the map p : X → B are: (a) a Ti-space and
a Ti-map resp., i = 0, 1, 2, (b) regular, (c) completely regular, then the space X is
respectively (a) a Ti-space, i = 0, 1, 2, (b) regular, (c) completely regular.

Definition 2.6. For a collection of fibrewise spaces {(Xα, pα)|α ∈ Λ}, the subspace
X = {t = {tα} ∈

∏{Xα : α ∈ Λ} : pαtα = pβtβ ∀α, β ∈ Λ} of the Tychonoff
product

∏
=

∏{Xα : α ∈ Λ} is called the fan product of the spaces Xα with
respect to the maps pα, α ∈ Λ.

For the projection prα :
∏ → Xα of the product

∏
onto the factor Xα, the

restriction πα of prα to X is called the projection of the fan product onto the factor
Xα, α ∈ Λ. From the definition of fan product we have that, pα ◦ πα = pβ ◦ πβ for
every α and β in Λ. Thus one can define a map p : X → B, called the product
of the maps pα, α ∈ Λ, by p = pα ◦ πα, α ∈ Λ, and (X, p) is called the fibrewise
product space of {(Xα, pα)|α ∈ Λ}.

Obviously, the projections p and πα, α ∈ Λ, are continuous.

Proposition 2.7. Let {(Xα, pα)|α ∈ Λ} be a collection of fibrewise spaces.
(1) If each pα is Ti (i = 0, 1, 2) (resp. functionally T2), then the product p is also
Ti (i = 0, 1, 2) (resp. functionally T2).
(2) If each pα is a surjective T3- (resp. T3 1

2
-)map, then the product p is also a T3-

(resp. a T3 1
2
-)map.

For a projection p : X → B and a filter (base) F in X, we denote that p∗(F)
is the filter generated by the set {p(F )|F ∈ F}. For a fibrewise map λ : (X, p) →
(Y, q), for a filter (base) F in X, we define λ∗(F) as same. For a filter (base) G in
Y , we define λ∗(G) is the filter generated by the set {λ−1(U)|U ∈ G}.
Definition 2.8. ([13, Section 4]) For a fibrewise space (X, p), by a b-filter (or tied
filter) on X we mean a pair (b,F), where b ∈ B and F is a filter on X such that
b is a limit point of the filter p∗(F) on B. By an adherence point of a b-filter F
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(b ∈ B) on X, we mean a point of the fibre Xb which is an adherence point of F
as a filter on X. Points outside Xb are not to be regarded as adherent. The term
limit point is used similarly.

Definition 2.9. (1) A projection p : X → B is called a compact map if it is perfect
(i.e., it is closed and all its fibres p−1(b) are compact). Note that in [13, Definition
3.1], the space X is called fibrewise compact over B.
(2) A projection p : X → B is said to be a locally compact map if for each x ∈ Xb,
where b ∈ B, there exist a nbd W ∈ N(b) and a nbd U ⊂ XW of x such that
p′ : XW ∩ U → W is a compact map, where p′ is the restriction of p and XW ∩ U
is the closure of U in XW .

Proposition 2.10. (1) Compact T2-map =⇒ T4-map =⇒ T3-map.
(2) Locally compact T2-map =⇒ T3-map.

Definition 2.11. (1) For a map p : X → B, a map c(p) : cpX → B is called a
compactification of p if c(p) is compact, X is dense in cpX and c(p)|X = p.
(2) A map p : X → B is called a T2-compactifiable map (or a Hausdorff-compactifiable
map) (resp. a T3 1

2
-compactifiable map (or a Tyhonoff compactifiable map)) if p has

a compactification c(p) : cpX → B and c(p) is a T2-map (resp. a T3 1
2
-map).

Proposition 2.12. (1) ([13, Section 8]) Every T2-compactifiable map is a T3-map.
(2) ([13, Section 8]) Every T4-map is a T2-compactifiable map.
(3) ([13, Section 8]) Every locally compact T2-map is a T2-compactifiable map.
(4) ([19, Section 1.6]) Every T3 1

2
-map is a T3 1

2
-compactifiable map.

Definition 2.13. (James [13, Definitions 10.1 and 10.3])
(1) Let (X, p) be a fibrewise space. A subset H of X is quasi-open (resp. quasi-
closed) if the following condition is satisfied: for each b ∈ B and V ∈ N(b) there
exists a nbd W ∈ N(b) with W ⊂ V such that whenever p|K : K → W is compact
then H ∩K is open (resp. closed) in K.
(2) Let a projection p : X → B be a T2-map. The map p is a k-map if every
quasi-closed subset of X is closed in X or, equivalently, if every quasi-open subset
of X is open in X, where a k-map p : X → B is same as that X is a fibrewise
compactly generated space ([13, Section 8]).

Proposition 2.14. Let p : X → B be a locally compact T2-map. If H is quasi-
open (resp. quasi-closed) in X then H is open (resp. closed) in X.

Definition 2.15. (D.Buhagiar [6]) A map p : X → B is said to be paracompact
if for every point b ∈ B and every open (in X) cover U = {Uα|α ∈ A} of the fibre
Xb (i.e., Xb ⊂ ∪{Uα|α ∈ A}), there exist W ∈ N(b) and an open (in X) cover V
of XW such that XW is covered by U and V is a locally finite (in XW ) refinement
of {XW} ∧ U .

Definition 2.16. (1) ([8, Definition 2.8]) For a map p : X → B, a sequence
{Un}n∈N of open (in X) covers of Xb, b ∈ B, is said to be a b-development if for
every x ∈ Xb and every U ∈ N(x), there exist n ∈ N and W ∈ N(b) such that
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x ∈ st(x,Un) ∩ XW ⊂ U . The map p is said to have a p-development if it has a
b-development for every b ∈ B.
(2) ([8, Definition 2.9]) A closed map p : X → B is said to be an MT -map if it is
collectionwise normal and has a p-development.

Theorem 2.17. ([8, Proposition 2.20]) Let p : X → B be an MT -map and
q : Y → B a continuous map. If λ : p → q is a perfect morphism of p onto q, then
q is also an MT -map.

Next, according to [20] let us refer to (completely) trivially metrizable maps.
For a map p : X → B, a pseudometric ρ on X is called a trivial metric (T-metric,
for short) on p if the restriction of ρ to every fibre p−1(b), b ∈ B, is a metric and
p−1τ∪τρ, where τρ is the topology on X generated by ρ, is a subbase of the topology
of X. A map p : X → B is called trivially metrizable map (a TM -map, for short)
if there exists a T -metric on p. A T -metric on a map p : X → B is called complete
(a CT -metric, for short) if

(*) For any b-filter F , b ∈ B, on X containing elements of arbitrary small
diameter, F has adherence points.

A map p : X → B is called completely trivially metrizable map (a complete TM -
map, for short) if there exists a CT -metric on it.

A map p : X → B is called (resp. closedly) parallel to a space Z if there exists an
embedding e : X → B×Z such that (resp. e(X) is closed in B×Z and ) p = π ◦ e,
where π : B×Z → B is the projection (see [18]). The following are proved in [20]:

Theorem 2.18. A map p : X → B is a TM -map if and only if p is parallel to a
metrizable space, and p is a complete TM -map if and only if it is closedly parallel
to a completely metrizable (i.e., metrizable by complete metric) space.

Definition 2.19. (Konami-Miwa [15]) Let p : X → B be a projection, and ∆ be
the diagonal of X × X. A fibrewise entourage uniformity on X is a filter Ω on
X ×X satisfying the following four conditions:

(J1) ∆ ⊂ D for every D ∈ Ω.
(J2) Let D ∈ Ω. Then for each b ∈ B there exist W ∈ N(b) and E ∈ Ω such that

E ∩X2
W ⊂ D−1.

(J3) Let D ∈ Ω. Then for each b ∈ B there exist W ∈ N(b) and E ∈ Ω such that

(E ∩X2
W ) ◦ (E ∩X2

W ) ⊂ D

(J4) If E ⊂ X ×X satisfies that for each b ∈ B there exist W ∈ N(b) and D ∈ Ω
such that D ∩X2

W ⊂ E, then E ∈ Ω.

Note that in [13, Section 12], a filter Ω on X×X satisfying (J1),(J2) and (J3) is
called a fibrewise uniform structure on X. So, the notion of a fibrewise entourage
uniformity is slightly stronger than one of a fibrewise uniform structure.

For a projection p : X → B and W ∈ τ , let µW be a non-empty family of
coverings of XW . We say that {µW}W∈τ is a system of coverings of {XW}W∈τ .
(For this, we briefly use the notations {µW} and {XW}). Let U and V be families
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of subsets of a set X. If V refines U in the usual sense, we denote V < U . Let us
define the notion of fibrewise covering uniformity.

Definition 2.20. ([15]) Let p : X → B be a projection, and µ = {µW} be a system
of coverings of {XW}. We say that the system µ = {µW} is a fibrewise covering
uniformity (and a pair (X,µ) or (X, {µW})) is a fibrewise covering uniform space)
if the following conditions are satisfied:

(C1) Let U be a covering of XW and for each b ∈ W there exist W ′ ∈ N(b) and
V ∈ µW ′ such that W ′ ⊂ W and V < U . Then U ∈ µW .

(C2) For each Ui ∈ µW , i = 1, 2, there exists U3 ∈ µW such that U3 < Ui, i = 1, 2.
(C3) For each U ∈ µW and b ∈ W , there exist W ′ ∈ N(b) and V ∈ µW ′ such that

W ′ ⊂ W and V is a star refinement of U .
(C4) For W ′ ⊂ W , µW ′ ⊃ µW |XW ′ , where

µW |XW ′ = {U|XW ′ |U ∈ µW} and U|XW ′ = {U ∩XW ′|U ∈ U}.
For a fibrewise entourage uniformity Ω on X, D ∈ Ω and W ∈ τ , let U(D,W ) =

{D(x) ∩ XW |x ∈ XW}. Further let µW (Ω) be the family of coverings U of XW

satisfying that for each b ∈ W there exist W ′ ∈ N(b) and D ∈ Ω such that
W ′ ⊂ W and U(D,W ′) < U . Then the system µ(Ω) = {µW (Ω)} is a fibrewise
covering uniformity ([15, Proposition 3.7]).

Conversely, for a fibrewise covering uniformity µ = {µW}, we can constructed a
fibrewise entourage uniformity Ω(µ) as follows ([15, Construction 3.8]): For U ∈
µW , D(U) =

⋃{Uα×Uα|Uα ∈ U}. Let Ω(µ) be the family of all subsets D ⊂ X×X
satisfying the following condition:

∆ ⊂ D, and for every b ∈ B there exist W ∈ N(b) and U ∈ µW

such that D(U) ⊂ D.

Then Ω(µ) is a fibrewise entourage uniformity ([15, Proposition 3.10]).

3. Čech-complete maps

In this section, we introduce a new notion “Čech-complete map”, and investi-
gate some its basic properties, invariance under perfect maps, characterizations by
compactifications of Čech-complete maps and relationships with other maps. For
the detail of Čech-completemaps, see Bai-Miwa [2].

Definition 3.1. Let X be a topological space, and A a subset of X. We say that
the diameter of A is less than a family A = {As}s∈S of subsets of the space X, and
we shall write δ(A) < A, provided that there exists an s ∈ S such that A ⊂ As.

Definition 3.2. A T2-compactifiable map p : X → B is Čech-complete if for each
b ∈ B, there exists a countable family {An}n∈N of open (in X) covers of Xb with
the property that every b-filter F which contains sets of diameter less than An for
every n ∈ N has an adherence point.

Theorem 3.3. For a Čech-complete map p : X → B, if F is a closed subset of X,
then p|F : F → B is Čech-complete.
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Theorem 3.4. Assume that B is regular. For a Čech-complete map p : X → B,
if G is a Gδ-subset of X, then p|G: G → B is Čech-complete.

For the fibrewise product spaces, we have the following.

Theorem 3.5. Let {(Xn, pn)|n ∈ N} be a countable family of fibrewise spaces and
(X, p) be the fibrewise product space of {(Xn, pn)|n ∈ N}, where X =

∏
B Xn. If

each pn is a surjective Čech-complete map, then the product p is Čech-complete.

We can prove the following about the invariance of Čech-complete maps under
perfect maps.

Theorem 3.6. Let a fibrewise map f : (X, p) → (Y, q) be a perfect map, and
p and q be T2-compactifiable maps. Then p is Čech-complete if and only if q is
Čech-complete.

We investigate some characterizations of Čech-complete maps by compactifica-
tions of the maps. Further, we give an example in which for a projection p : X → B
each fibre is Čech-complete, but p is not Čech-complete. We can prove the following
theorem.

Theorem 3.7. Suppose that B is regular. For a T2-compactifiable map p : X → B,
the following are equivalent:
(1) p : X → B is Čech-complete.
(2) For every T2-compactification p′ : X ′ → B of p and each b ∈ B, Xb is a Gδ-
subset of X ′

b.
(3) There exists a T2-compactification p′ : X ′ → B of p such that Xb is a Gδ-subset
of X ′

b for each b ∈ B.

In the following example, we shall consider the difference between these char-
acterizations of a Čech-complete map and Čech-completeness of each fibre of the
map.

Example 3.8. There exists a map p : X → B satisfying the following:
(1) p is a T2-compactifiable map.
(2) Each fibre of p is Čech-complete, but p is not a Čech-complete map.
(3) p is an open map. (Note that p is not a closed map.)

[Construction]: First, note that the space X is the same space constructed in [10,
Example 1.6.19].

Let X = {0} ∪ (
⋃

m∈N Xm), where Xm = { 1
m
} ∪ { 1

m
+ 1

m2+k
|k ∈ N}, A0 =

{0} ∪ { 1
m
| m ∈ N} and Ym = Xm − { 1

m
} for every m ∈ N. We denote the

n-th element of Ym by Pmn. The topology on X is generated by a nbd system
defined as follows: For x ∈ Ym for each m ∈ N, B(x) = {{x}}; for x = 1

m
,

B(x) = {Un|n ∈ N}, where Un = Xm − {Pmi|i ≤ n}; for x = 0,
B(0) = {U |there exist a finite set H ⊂ N and F ⊂ X − A0 satisfying

F ∩Bm is finite for each m ∈ N such that U = X−(F ∪⋃
m∈H Xm)}.

This space X is perfectly normal and sequential ([10, Example 1.6.19]).
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For each n ∈ N let An = {Pmn|m ∈ N}, then {An}n≥0 is a decomposition of
X generating a quotient space B = {bn|bn = An and n ≥ 0}, which is a compact
T2-space. We denote the quotient map by p : X → B.

About the relationships between Čech-complete maps and other maps, we shall
prove the following implications under some conditions:

Locally compact map =⇒ Čech-complete map =⇒ k-map,
where a k-map p : X → B is same as that X is a fibrewise compactly generated
space ([13, Section 10, Definition 10.3]).

Theorem 3.9. Every locally compact T2-map is Čech-complete.

From Proposition 2.14, we know that every locally compact T2-map is a k-map.
Further, we can prove the following.

Theorem 3.10. Suppose that B is regular and satisfies the axiom of first count-
ability. Then a Čech-complete map p : X → B is a k-map.

4. p-maps and M-maps

In this section, we introduce new notions of p-maps and M -maps, and investigate
some basic properties, which are extensions of corresponding properties of p-spaces
and M -spaces. For the detail of p-maps and M -maps, see Bai-Miwa [3].

Definition 4.1. For a T2-compactifiable map f : X → B is a p-map if for every
b ∈ B, there exists a sequence {Un}n∈N of open (in X) covers of Xb satisfying that
for every n ∈ N and x ∈ Xb, if x ∈ Un ∈ Un then
(P1) (

⋂
n∈N Un) ∩Xb is compact.

(P2) For every open (in X) set U with (
⋂

n∈N Un) ∩ Xb ⊂ U , there exist n0 ∈ N

and W ∈ N(b) such that (
⋂

n∈N Un) ∩Xb ⊂ (
⋂

i≤n0
Ui) ∩XW ⊂ U .

For a p-map f : X → B, we can characterize it by using a compactification of f
as follows.

Theorem 4.2. Suppose that B is regular. For a map f : X → B, f is a p-map if
and only if there is a compactification f ′ : X ′ → B of f satisfying that for every
b ∈ B there is a sequence {Pn}n∈N of open families of X ′ such that:
(1) For every n ∈ N, Xb ⊂

⋃Pn,
(2) For every x ∈ Xb,

⋂
n∈N st(x,Pn) ∩X ′

b ⊂ Xb.

For a locally compact T2-map f : X → B, since it has the Alexandorff-type
compactification f ′ : X ′ → B ([13, Section 8]) so X is open in X ′, we have the
following.

Corollary 4.3. Suppose that B is regular. A locally compact T2-map is a p-map.

For submaps of p-maps, we have the following.
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Theorem 4.4. For a p-map f : X → B, we have:
(1) If F is a closed subset of X, then the submap f |F is a p-map.
(2) Suppose that B is regular. If G is a Gδ-subset of X, then the submap f |G is a
p-map.

Theorem 4.5. Suppose that B is regular. Let fn : Xn → B be a p-map for every
n ∈ N. Then the product map f =

∏
B fn :

∏
B Xn → B is a p-map.

Theorem 4.6. Let f : X → B and g : Y → B be maps and λ : f → g be a perfect
morphism. If g is a p-map, then f is also p-map.

If f : X → B is a paracompact p-map, the converse of this theorem holds. For
this, see Theorem 4.13.

Theorem 4.7. Suppose that B is regular. If f : X → B is Čech-complete, then f
is a p-map.

Theorem 4.8. Suppose that B is regular and satisfies the axiom of first count-
ability. Then a p-map f : X → B is a k-map.

Definition 4.9. A T2-compactifiable map f : X → B is an M-map if for every
b ∈ B there is a sequence {Un}n∈N of open (in X) covers of Xb satisfying:
(M1) For every n ∈ N and x ∈ Xb, if xn ∈ st(x,Un) ∩ Xb, then the sequence
{xn}n∈N has an accumulation point in Xb,
(M2) For every n ∈ N, Un+1 is a b-star refinement of Un.

For submaps of an M -map, we have the following.

Theorem 4.10. For an M -map f : X → B and a closed subset F of X, f |F is an
M -map.

Theorem 4.11. For maps f : X → B and g : Y → B, if there is a quasi-perfect
morphism λ : f → g and g is an M -map, then f is an M -map.

About the relationships of p-maps and M -maps, there are no implications each
other. For these, consider the case B is the singleton set and a p-space (resp. an
M -space) is not an M -space (resp. a p-space). In the realm of paracompact maps,
we can prove in Theorem 4.12 that an M -map is the same as a p-map which is
an analogous theorem of [1, Theorem 16]. Further, we can prove in Theorem 4.13
that a perfect image of a paracompact p-map is also a paracompact p-map which
is an analogous theorem of [11, Theorem 1].

Theorem 4.12. For a paracompact map f : X → B, f is an M -map if and only
if f is a p-map.

For a perfect morphism image of a p-map, we have the following.

Theorem 4.13. Suppose that B is regular. For T2-compactifiable maps f : X → B
and g : Y → B, if there exists an onto perfect morphism λ : f → g and f is a
paracompact p-map, then g is a paracompact p-map.
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In connection with Theorem 4.13, note that, if f is not paracompact, it does not
necessarily hold. For this, see [5, Example 2.1] for the case B is the singleton set.

Finally, we investigate the relations of MT -maps and (paracompact) M -maps
and some analogous problems of the relations of metrizable spaces and (paracom-
pact) M -spaces. First, we have the following.

Theorem 4.14. Suppose that B is regular. If a T2-compactifiable map f : X → B
has a f -development, then f is a p-map.

Corollary 4.15. Suppose that B is regular. If a map f : X → B is an MT -map,
then f is a paracompact p-map.

Corollary 4.16. Suppose that B is regular. Let f : X → B and g : Y → B be
maps and λ : f → g be a perfect morphism. If the map g is an MT -map, then f
is a paracompact p-map (so M -map).

For two maps f : X → B and g : Y → B, f is said to be (resp. closedly) embed-
dable to g if there exists a morphism λ : f → g such that λ(X) is a (resp. closed)
subspace of Y .

Problem 4.17. Let f : X → B be an M -map (resp. a paracompact M -map). Then
is there an MT -map g : Y → B and a quasi-perfect (resp. a perfect) morphism
λ : f → g?

In this case, we call f the preimage-map of g under λ.

Problem 4.18. Let f : X → B be a paracompact p-map. Then is f closedly
embeddable to the product map of an MT -map and a compact map?

The next theorem is a partial answer of Problem 4.18. If Problem 4.17 is affir-
mative, Problem 4.18 is affirmative by this theorem.

Theorem 4.19. Let f : X → B be a map such that f is a preimage-map of an
MT -map g : Y → B under a perfect morphism λ : f → g. Then f is closedly
embeddable to the product map of g and a T2-compactification f ′ : X ′ → B of f .

5. Uniformities and completeness on metrizable maps

In this section, we prove the existence of fibrewise uniformities on some metriz-
able maps, and study the relations between the completeness induced by a trivial
metric and the one defined by fibrewise uniformities. Further, we discuss the rela-
tions between completely metrizable maps and Čech-complete maps. For the detail
of uniformities and completeness on metrizable maps, see Bai-Miwa [4].

Firstly, we shall show that for a TM-map p : X → B parallel to a metric space
(M,ρ), there exists a fibrewise covering uniformity on X induced by ρ. Let e : X →
B ×M be an embedding. For each n ∈ N, let Un be the family {U(x, 1

n
)|x ∈ M},

where U(x, 1
n
) = {y ∈ M |ρ(x, y) < 1

n
} and Wn = {e−1(B × U)|U ∈ Un}. Then for
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each W ∈ τ , let µW = {U|⋃U = XW and for each b ∈ W there exist n ∈ N and
W ′ ∈ N(b) with W ′ ⊂ W such that Wn|XW ′ < U}.

Since µW and µ constructed above are induced by the metric ρ on M (on X),
we call this µ = {µW} a fibrewise covering uniformity on X induced by the metric
ρ, and denoted by µρ = {µW}ρ. Further, by the construction of {Wn|n ∈ N} in
the above, we say that the family {Wn|n ∈ N} is the standard developable covering
(sd-covering, for short) on X induced by ρ. (Note that we exclusively use the
notation {Wn|n ∈ N} as sd-covering induced by ρ in this section.)

We can prove the following theorem.

Theorem 5.1. For a TM -map p : X → B with a T -metric ρ, the system µρ =
{µW}ρ is a fibrewise covering uniformity on X induced by ρ.

Next, we investigate the equivalence between the completeness of a TM -map
in the Pasynkov’s sense ([20]) and the one in the James’ sense ([13, Section 15]).
For convenience’ sake, we call them P-complete(ness) and J-complete(ness), respec-
tively.

To study it, first we must investigate the completeness by fibrewise covering
uniformity (we call it CU -complete(ness).) and prove that it is equivalent to J-
completeness. For this, using the equivalence between fibrewise entourage unifor-
mity and fibrewise covering uniformity ([15]) and the theory of I.M. James ([13,
Chapter 3]), we shall prove in Theorem 5.6 that for a TM -map with T -metric ρ a
b-filter is P -Cauchy with respect to ρ (Definition 5.5) if and only if it is J-Cauchy
with respect to Ω(µρ) (Definition 5.2).

The notion of fibrewise entourage uniformity is slightly stronger than the one of
fibrewise uniform structure ([13]), but we use the terminology in [13] in this theory
of fibrewise entourage uniformity.

We first recall the definition of Cauchy b-filter in [13].

Definition 5.2. ([13, Definition 14.1]) For a map p : X → B, let Ω be a fibrewise
entourage uniformity on X.
(1) A subset M of X is said to be D-small, where D ⊂ X2, if M2 is contained in
D.
(2) A b-filer F , where b ∈ B, is Cauchy if F contains a D-small member for each
D ∈ Ω. (We call F J-Cauchy with respect to Ω (with respect to Ω, for short), for
convenience’ sake.)

We shall define a new notion of Cauchy b-filter in fibrewise covering uniformity
µ = {µW} on X.

Definition 5.3. For a map p : X → B, let µ = {µW} be a fibrewise covering
uniformity on X. A b-filer F , where b ∈ B, is Cauchy if for each W ∈ N(b) and
U ∈ µW there exist F ∈ F and U ∈ U such that F ⊂ U . (We call F CU -Cauchy
with respect to µ (with respect to µ, for short), for convenience’ sake.)
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Theorem 5.4. For a map p : X → B, let Ω be a fibrewise entourage uniformity
on X. Then for each b ∈ B, a b-filer F is J-Cauchy with respect to Ω if and only
if it is CU -Cauchy with respect to µ(Ω).

In the following we shall give the definitions of P -completion and J-completion
of TM -map. For a space X, let Υ = {Φα|α ∈ Λ} be a collection of families of
subsets of X. We say that a family Ψ of subsets of X is subordinated to the family
Υ if for each α ∈ Λ there exist Uα ∈ Φα and V ∈ Ψ such that V ⊂ Uα.

Definition 5.5. Let p : X → B be a TM -map with a T -metric ρ.
(1)([20]) The map p is complete if for any b-filter F , b ∈ B, on X subordinated to
the sd-covering {Wn|n ∈ N} induced by ρ, it has adherence points. (We call this
“complete” P-complete, and also call this b-filter satisfying this condition P-Cauchy
w.r.t ρ.)
(2)([13, Definition 14.10]) The map p is complete if for each b ∈ B any J-Cauchy
b-filter F with respect to Ω(µρ) converges. (We call this “complete” J-complete.)

Theorem 5.6. For a TM -map p : X → B with a T -metric ρ and each b ∈ B,
a b-filer F is a P -Cauchy with respect to ρ if and only if it is a J-Cauchy with
respect to Ωρ.

Finally, we study the relations between complete TM -maps and Čech-complete
maps.

Lemma 5.7. Every TM -map p : X → B is a T3 1
2
-map.

By this lemma, every TM -map is T3 1
2
-compactifiable. For complete TM -maps,

we can prove the following.

Theorem 5.8. If p : X → B is a complete TM -map, then p is Čech-complete.
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