Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science **42** (2009), pp. 59–81

p-HARMONIC FUNCTIONS ON A RESISTIVE TREE

HISAYASU KURATA

Communicated by Toshihiro Nakanishi

(Received: November 26, 2008)

ABSTRACT. We discuss the *p*-harmonicity of a linear combination of *p*-harmonic functions on a tree. If $p \neq 2$, the *p*-harmonicity is non-linear, i.e., the linear combination of *p*-harmonic functions need not be *p*-harmonic. In spite of this non-linear nature, we find some *p*-harmonic functions whose linear combinations become *p*-harmonic.

Also we discuss the quasi-symmetricity of *p*-Green functions. It is well known that two 2-Green functions g_a and g_b are symmetric, i.e., $g_a(b) = g_b(a)$. However it is not known whether two *p*-Green functions are symmetric or not if $p \neq 2$. Moreover it is not known even whether those are quasi-symmetric or not, which means that $g_a(b)/g_b(a)$ is bounded or not. In this article we show that, for every tree, there exists a resistance such that two *p*-Green functions are quasi-symmetric; also we show that, for every tree, there exists a resistance such that two *p*-Green functions are such that two *p*-Green functions are not quasi-symmetric.

This paper is rewritten from the doctor's thesis.

1. INTRODUCTION

Let 1 . We consider*p* $-harmonic functions on a tree. Let <math>\mathcal{T} = (V, E, r)$ be a locally finite connected tree with a resistance *r*, where $V = V(\mathcal{T})$ is the vertex set and $E = E(\mathcal{T})$ is the edge set. An edge $(x, y) \in E$ is an ordered pair of vertices such that $(x, y) \in E$ if and only if $(y, x) \in E$. If $(x, y) \in E$, then we say that *x* is adjacent to *y* and write $x \sim y$. A resistance *r* is a positive function on *E* such that r(y, x) = r(x, y). We define the discrete derivative ∇u and the discrete *p*-Laplacian $\Delta_p u$ for a function *u* on *V* by

$$\nabla u(x,y) = r(x,y)^{-1}(u(y) - u(x)),$$
$$\Delta_p u(x) = \sum_{\substack{y \in V \\ y \sim x}} |\nabla u(x,y)|^{p-2} \nabla u(x,y).$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 31C20, Secondary 39A12.

Key words and phrases. Linear relation, Quasi-symmetric, Nonlinear Green function, Discrete potential theory.

A summary of doctoral thesis at Shimane University.

Let $\varphi_p(t) = |t|^{p-2}t$. Then we can write

$$\Delta_p u(x) = \sum_{\substack{y \in V \\ y \sim x}} \varphi_p(\nabla u(x, y)) = -\sum_{\substack{y \in V \\ y \sim x}} \varphi_p(\nabla u(y, x)).$$

Let $D \subset V$. If $\Delta_p u = 0$ in D, then we say that u is p-harmonic in D.

Let $x, y \in V$. A path joining x to y is a sequence $\{x = x_0, x_1, \ldots, x_{l-1}, x_l = y\}$ of distinct vertices such that $x_0 \sim x_1 \sim \cdots \sim x_{l-1} \sim x_l$. Since \mathcal{T} is a tree, the path joining x to y is unique. The number l is called the length of the path and is denoted by $\rho(x, y)$. For $x \in V$ let $\deg(x) = \#\{y \in V; \rho(x, y) = 1\}$. This is the number of neighbors of x. Let A be a subset of V. We say that A is connected if any two vertices of A are joined by a path whose vertices are still in A. By \overline{A} we denote the minimal connected set including A. Let $B \subset E$ and $x \in V$. We remove B from E, then we obtain some components. We denote by $\mathcal{S}(\mathcal{T}, B, x)$ the component which contains x.

We define the Dirichlet sum $D_p[u]$ of order p by

$$D_p[u] = \frac{1}{2} \sum_{(x,y)\in E} r(x,y) |\nabla u(x,y)|^p.$$

Denote by $\mathbf{D}^{(p)}(\mathcal{T})$ the set of functions on V with finite Dirichlet sum of order p. Then $\mathbf{D}^{(p)}(\mathcal{T})$ is a Banach space with the norm $||u||_p = (D_p[u] + |u(x_0)|)^{1/p}$, where x_0 is a fixed vertex. Let $L_0(\mathcal{T})$ be the set of functions on V with finite support. Also let $\mathbf{D}_0^{(p)}(\mathcal{T})$ be the closure of $L_0(\mathcal{T})$ in $\mathbf{D}^{(p)}(\mathcal{T})$ with respect to the norm $||\cdot||_p$. A tree \mathcal{T} is said to be of hyperbolic type of order p if $1 \notin \mathbf{D}_0^{(p)}(\mathcal{T})$; a tree \mathcal{T} is said to be of parabolic type of order p otherwise. Consider the discrete boundary value problem

(1)
$$\Delta_p u = -\delta_a, \qquad u \in \mathbf{D}_0^{(p)}(\mathcal{T}),$$

where δ_a is the characteristic function of $\{a\}$, i.e., $\delta_a(x) = 1$ if x = a and $\delta_a(x) = 0$ otherwise. The solution u to (1) uniquely exists if and only if the tree is of hyperbolic type of order p. We call the solution u the p-Green function with pole at a and denote it by g_a . For these accounts see Kayano-Yamasaki [1], Nakamura-Yamasaki [4], Soardi-Yamasaki [5], Yamasaki [6, 7, 8].

We discuss the *p*-harmonicity of a linear combination of *p*-harmonic functions on a tree. If $p \neq 2$, the *p*-harmonicity is non-linear, i.e., the linear combination of *p*-harmonic functions need not be *p*-harmonic. In spite of this non-linear nature, we find some *p*-harmonic functions whose linear combinations become *p*-harmonic. By definition a constant is a *p*-harmonic function and the linear combination of an arbitrary *p*-harmonic function and a constant is *p*-harmonic. We shall find other *p*-harmonic linear combinations of *p*-harmonic functions. Let $\{u_1, \ldots, u_m\}$ be an *m*-tuple of *p*-harmonic functions in $D \subset V$ such that $\{1, u_1, \ldots, u_m\}$ is linearly independent. We say that $\{u_1, \ldots, u_m\}$ has a linear relation in *D* if every linear combination $\sum_{j=1}^{m} t_j u_j$ is *p*-harmonic in *D*. Also we say that $\{u_1, \ldots, u_m\}$ has a partial linear relation in *D* if $\sum_{j=1}^{m} t_j u_j$ is *p*-harmonic in *D* for some $t_1, \ldots, t_m \in \mathbb{R} \setminus \{0\}$. This problem has studied in [2]. **Theorem 1.** Let $D \subset V$ and let $\{u_1, \ldots, u_m\}$ be an *m*-tuple of *p*-harmonic functions in *D*. Suppose that, for each $(x, y) \in E$ with $x \in D$ or $y \in D$, there is $j_0(x, y) \in \{1, \ldots, m\}$ such that $u_j(x) = u_j(y)$ whenever $j \neq j_0(x, y)$. Then $\{u_1, \ldots, u_m\}$ has a linear relation in *D*.

Example 2. Let \mathcal{T} be a tree formed by m half lines meeting at a vertex x_0 , i.e., $V = \{x_0\} \cup \bigcup_{i=1}^m \{x_{i,k}\}_{k=1}^\infty$ and $E = \bigcup_{i=1}^m \{(x_{i,k-1}, x_{i,k}), (x_{i,k}, x_{i,k-1})\}_{k=1}^\infty$, where $x_{i,0} = x_0$ for $i = 1, \ldots, m$. Let r be an arbitrary resistance on E. We define a function u_i on V by

$$u_i(x_0) = 0,$$

$$u_i(x_{j,k}) = \begin{cases} r(x_0, x_{j,1}) + r(x_{j,1}, x_{j,2}) + \dots + r(x_{j,k-1}, x_{j,k}) & \text{if } j = i, \\ 0 & \text{otherwise} \end{cases}$$

for i = 1, ..., m. Let 1 . Then the following statements hold:

- (i) Every u_i is *p*-harmonic in $V \setminus \{x_0\}$ and the *m*-tuple $\{u_1, \ldots, u_m\}$ has a linear relation in $V \setminus \{x_0\}$.
- (ii) Every difference $v_{i,j} = u_i u_j$ is *p*-harmonic in *V*. Moreover, let $\Lambda := \{(i_1, j_1), \dots, (i_{\mu}, j_{\mu})\} \subset \{1, \dots, m\} \times \{1, \dots, m\}$ such that $i_1, j_1, \dots, i_{\mu}, j_{\mu}$ are distinct integers. Then $\{v_{i,j}\}_{(i,j)\in\Lambda}$ has a linear relation in *V*.
- (iii) The (m-1)-tuple $\{v_{1,2}, v_{1,3}, \ldots, v_{1,m}\}$ has a partial linear relation in V.

We give different types of *p*-harmonic functions with linear relation.

Theorem 3. Suppose that $deg(x) \ge 2$ for every $x \in V$. For $a \in V$ we define a function h_a on V by

$$h_a(a) = 0,$$
 $h_a(x) = \sum_{k=0}^{l-1} r(x_k, x_{k+1}) \prod_{j=0}^k (\deg(x_j) - 1)^{1/(1-p)},$

where $\{a = x_0, x_1, \ldots, x_{l-1}, x_l = x\}$ is the path joining a to x. Then the function h_a is p-harmonic in $V \setminus \{a\}$. If A is a finite subset of V, then $\{h_a\}_{a \in A}$ has a linear relation in $V \setminus \overline{A}$.

Theorem 4. Suppose that $\deg(x) \ge 2$ for every $x \in V$. Let h_a be the function on V defined in Theorem 3. If $a, b \in V$ with $\rho(a, b) = 2$, then $\{h_a, h_b\}$ has a partial linear relation in $V \setminus \{a, b\}$.

We show that the set of *p*-Green functions with poles $a \in A$ has a linear relation outside \overline{A} .

Theorem 5. Suppose that the tree \mathcal{T} is of hyperbolic type of order p. Then the p-Green function g_a is p-harmonic in $V \setminus \{a\}$. If A is a finite subset of V, then $\{g_a\}_{a \in A}$ has a linear relation in $V \setminus \overline{A}$.

Next we discuss the quasi-symmetricity of *p*-Green functions. It is well known that two 2-Green functions g_a and g_b are symmetric, i.e., $g_a(b) = g_b(a)$. However it is not known whether two *p*-Green functions are symmetric or not if $p \neq 2$. Moreover it is not known even whether those are quasi-symmetric or not, which

means that $g_a(b)/g_b(a)$ is bounded or not. Let \mathcal{T} be a tree of hyperbolic type of order p. Let

$$H(x,y) = \frac{g_x(y)}{g_y(x)} \quad \text{for } x, y \in V,$$
$$M(\mathcal{T}) = \sup_{x,y \in V} H(x,y).$$

We consider the problem whether $M(\mathcal{T})$ is finite or not for $p \neq 2$. A tree \mathcal{T} is said to have a symmetric *p*-Green function if $M(\mathcal{T}) = 1$; a tree \mathcal{T} is said to have a quasi-symmetric *p*-Green function if $M(\mathcal{T})$ is finite. This problem has studied in [3].

Theorem 6. Let $\mathcal{T} = (V, E, r)$ be a tree of hyperbolic type of order p. Let $(a_1, a_2) \in E$. Let $\mathcal{T}_1 = \mathcal{S}(\mathcal{T}, \{(a_1, a_2)\}, a_1)$ and $\mathcal{T}_2 = \mathcal{S}(\mathcal{T}, \{(a_1, a_2)\}, a_2)$. Then \mathcal{T} has a quasi-symmetric p-Green function if and only if each of \mathcal{T}_1 and \mathcal{T}_2 has a quasi-symmetric p-Green function.

Theorem 7. Let $p \neq 2$. Let (V, E, r) be a tree.

- (i) Suppose that there are only finitely many $x \in V$ such that $\deg(x) \geq 3$. Then (V, E, r) has a quasi-symmetric p-Green function whenever (V, E, r) is of hyperbolic type of order p.
- (ii) Suppose that there are infinitely many $x \in V$ such that $\deg(x) \geq 3$. Then we find two resistances r_1 and r_2 with the following conditions.
 - (a) The tree (V, E, r_1) is of hyperbolic type of order p and has a quasisymmetric p-Green function.
 - (b) The tree (V, E, r_2) is of hyperbolic type of order p and does not have a quasi-symmetric p-Green function.

2. Proof of Theorems 1, 3, 4 and 5

Note that the function $\varphi_p(t) = |t|^{p-2}t$ satisfies $\varphi_p(st) = \varphi_p(s)\varphi_p(t)$.

Proof of Theorem 1. Let $u = \sum_{j=1}^{m} t_j u_j$. We shall prove $\Delta_p u(x) = 0$ for every $x \in D$. Take $y \in V$ with $y \sim x$. By the assumption we have $\nabla u_j(x, y) = 0$ for $j \neq j_0(x, y)$. Therefore

$$\varphi_p(\nabla u(x,y)) = \varphi_p(t_{j_0(x,y)})\varphi_p(\nabla u_{j_0(x,y)}(x,y)) = \sum_{j=1}^m \varphi_p(t_j)\varphi_p(\nabla u_j(x,y)).$$

Hence

$$\Delta_p u(x) = \sum_{j=1}^m \varphi_p(t_j) \Delta_p u_j(x) = 0.$$

This means u is p-harmonic at x, and hence in D. *Proof of Example 2.* (i). We observe that

(2)
$$\nabla u_i(x_{j,k-1}, x_{j,k}) = \begin{cases} 1 & \text{if } j = i, \\ 0 & \text{otherwise} \end{cases}$$

It is clear that $\Delta_p u_i(x_{j,k}) = 0$ if $j \neq i$. If j = i, then

$$\nabla u_i(x_{j,k}, x_{j,k+1}) = 1, \qquad \nabla u_i(x_{j,k}, x_{j,k-1}) = -1,$$

and therefore $\Delta_p u_i(x_{i,k}) = 0$. Hence u_i is *p*-harmonic in $V \setminus \{x_0\}$ for every *p*. Also (2) means that $\{u_1, \ldots, u_m\}$ satisfies the condition of Theorem 1 for $D = V \setminus \{x_0\}$. Hence $\{u_1, \ldots, u_m\}$ has a linear relation in $V \setminus \{x_0\}$.

(ii). We observe from (i) that $v_{i,j}$ are *p*-harmonic in $V \setminus \{x_0\}$ and so is their arbitrary linear combination. By definition

$$\Delta_p v_{i,j}(x_0) = \varphi_p(\nabla u_i(x_0, x_{i,1})) - \varphi_p(\nabla u_j(x_0, x_{j,1})) = 0,$$

and hence $v_{i,j}$ is *p*-harmonic at $\{x_0\}$ as well. We see that $\{v_{i,j}\}_{(i,j)\in\Lambda}$ satisfies the condition of Theorem 1 for D = V, and therefore $\{v_{i,j}\}_{(i,j)\in\Lambda}$ has a linear relation in V.

(iii). Let
$$u = \sum_{j=2}^{m} t_j v_{1,j}$$
. Then $u = \left(\sum_{j=2}^{m} t_j\right) u_1 - \left(\sum_{j=2}^{m} t_j u_j\right)$, so that
$$\Delta_p u(x_0) = \varphi_p \left(\sum_{j=2}^{m} t_j\right) - \sum_{j=2}^{m} \varphi_p(t_j).$$

Therefore, u is p-harmonic at x_0 if and only if $\varphi_p\left(\sum_{j=2}^m t_j\right) = \sum_{j=2}^m \varphi_p(t_j)$. This shows that $\{v_{1,2}, v_{1,3}, \ldots, v_{1,m}\}$ has a partial linear relation in V.

We shall prove Theorems 3 and 4. For simplicity we let $w(x) = (\deg(x)-1)^{1/(1-p)}$. Then

$$h_a(a) = 0,$$
 $h_a(x) = \sum_{k=0}^{l-1} r(x_k, x_{k+1}) \prod_{j=0}^k w(x_j),$

where $\{a = x_0, x_1, \dots, x_{l-1}, x_l = x\}$ is the path joining a to x.

Proof of Theorem 3. Let $x \in V \setminus \{a\}$. Take the path $\{a = x_0, x_1, \ldots, x_{l-1}, x_l = x\}$ joining a to x. Also let $y = x_{l-1}$ and let $z_1, \ldots, z_{\deg(x)-1}$ be the other neighbors of x. Since the path joining a to z_k is $\{a, x_1, \ldots, x_{l-1}, x, z_k\}$, we have

$$\nabla h_a(x,y) = -\frac{r(x_{l-1},x_l)}{r(x,y)} \prod_{j=0}^{l-1} w(x_j) = -\prod_{j=0}^{l-1} w(x_j)$$
$$\nabla h_a(x,z_k) = \frac{r(x_l,z_k)}{r(x,z_k)} \prod_{j=0}^{l} w(x_j) = \prod_{j=0}^{l} w(x_j).$$

Therefore

(3)
$$\nabla h_a(x, z_k) = -w(x)\nabla h_a(x, y).$$

Since $\varphi_p(w(x)) = (\deg(x) - 1)^{-1}$,

$$\Delta_p h_a(x) = \varphi_p(\nabla h_a(x, y)) + \sum_{k=1}^{\deg(x)-1} \varphi_p(\nabla h_a(x, z_k)) = 0.$$

Next let A be a finite subset of V and let $u = \sum_{a \in A} t_a h_a$. Let $x \in V \setminus \overline{A}$. Let y be the neighbor of x which is on the path joining $a \in A$ to x. Note that y is independent

of the choice of a since $x \notin \overline{A}$. Let $z_1, \ldots, z_{\deg(x)-1}$ be the other neighbors of x. Then (3) holds for each $a \in A$. Therefore $\nabla u(x, z_k) = -w(x)\nabla u(x, y)$, and consequently

$$\Delta_p u(x) = \varphi_p(\nabla u(x, y)) + \sum_{k=1}^{\deg(x)-1} \varphi_p(\nabla u(x, z_k)) = 0.$$

 \square

This means u is p-harmonic at x, and hence in $V \setminus \overline{A}$.

Proof of Theorem 4. Let $u = sh_a + th_b$. Let x be the vertex between a and b and let $z_1, \ldots, z_{\deg(x)-2}$ be the other neighbors of x. Then u is p-harmonic in $V \setminus \{a, x, b\}$ by Theorem 3.

Now we consider the *p*-harmonicity of *u* at *x*. We have $h_a(a) = 0$ and $h_b(a) = r(b, x)w(b) + r(x, a)w(b)w(x)$. Therefore

$$u(a) = tr(b, x)w(b) + tr(x, a)w(b)w(x).$$

Similarly we have

$$u(b) = sr(a, x)w(a) + sr(x, b)w(a)w(x),$$

$$u(z_k) = sr(a, x)w(a) + sr(x, z_k)w(a)w(x) + tr(b, x)w(b) + tr(x, z_k)w(b)w(x),$$

$$u(x) = sr(a, x)w(a) + tr(b, x)w(b).$$

Hence

$$\nabla u(x, a) = tw(b)w(x) - sw(a),$$

$$\nabla u(x, b) = sw(a)w(x) - tw(b),$$

$$\nabla u(x, z_k) = sw(a)w(x) + tw(b)w(x).$$

If we take s and t such that sw(a) + tw(b) = 0, then

$$\nabla u(x,a) = -\nabla u(x,b), \qquad \nabla u(x,z_k) = 0,$$

and therefore $\Delta_p u(x) = 0$. This means that $\{h_a, h_b\}$ has a partial linear relation.

Proof of Theorem 5. It is evident that g_a is p-harmonic in $V \setminus \{a\}$. Let A be a finite subset of V. Let $x \in V \setminus \overline{A}$. Take the path $\{a, x_1, \ldots, x_{l-1}, x\}$ joining $a \in A$ to x. Let k be the number such that $x_k \in \overline{A}$ and $x_{k+1} \notin \overline{A}$. Let $y = x_k$. Then y is independent of the choice of a.

Let $\tilde{\mathcal{T}}$ be the subtree whose vertex set is the union of $\{y\}$ and the connected component of $V \setminus \overline{A}$ including x. Let $\tilde{\Delta}_p$ be the *p*-Laplacian with respect to $\tilde{\mathcal{T}}$. Let \tilde{u}_a be the restriction of g_a to $\tilde{\mathcal{T}}$. Then it is easy to see that

$$\tilde{\Delta}_p \tilde{u}_a = \Delta_p g_a = 0 \quad \text{in } \tilde{\mathcal{T}} \setminus \{y\}, \qquad \tilde{u}_a \in \mathbf{D}_0^{(p)}(\tilde{\mathcal{T}}).$$

Let $c_a = -\varphi_q(\tilde{\Delta}_p \tilde{u}_a(y))$, where q is the number such that 1/p + 1/q = 1. Note that $\varphi_p(\varphi_q(t)) = t$. We see that $\tilde{v}_a = \tilde{u}_a/c_a$ satisfies

$$\tilde{\Delta}_p \tilde{v}_a = \frac{\Delta_p \tilde{u}_a}{\varphi_p(c_a)} = -\delta_y \quad \text{in } \tilde{\mathcal{T}}, \qquad \tilde{v}_a \in \mathbf{D}_0^{(p)}(\tilde{\mathcal{T}}).$$

Therefore \tilde{v}_a is the *p*-Green function \tilde{g}_y with pole at *y* with respect to $\tilde{\mathcal{T}}$. The uniqueness of the *p*-Green function implies that $\tilde{v}_a = \tilde{g}_y$, especially that \tilde{v}_a is independent of the choice of *a*. This means that

$$g_a = \tilde{u}_a = c_a \tilde{v}_a = c_a \tilde{g}_y$$
 in \mathcal{T} .

If we set $u = \sum_{a \in A} t_a g_a$, then

$$u = (\sum_{a \in A} t_a c_a) \tilde{g}_y \quad \text{in } \tilde{\mathcal{T}}.$$

Hence

$$\Delta_p u(x) = \varphi_p(\sum_{a \in A} t_a c_a) \Delta_p \tilde{g}_y(x) = \varphi_p(\sum_{a \in A} t_a c_a) \tilde{\Delta}_p \tilde{g}_y(x) = 0.$$

Thus u is p-harmonic at x. Since $x \in V \setminus \overline{A}$ is arbitrary, u is p-harmonic in $V \setminus \overline{A}$. Therefore $\{g_a\}_{a \in A}$ has a linear relation in $V \setminus \overline{A}$.

3. Proof of Theorem 6

First note that $cu|_{V(\mathcal{T}')} \in \mathbf{D}_0^{(p)}(\mathcal{T}')$ for any $u \in \mathbf{D}_0^{(p)}(\mathcal{T})$, for any subtree \mathcal{T}' of \mathcal{T} and for any constant c. This fact is applied repeatedly.

Lemma 8. Let $\mathcal{T} = (V, E, r)$ be a tree of hyperbolic type of order p. Let $(a, b) \in E$. Let $\mathcal{T}' = \mathcal{S}(\mathcal{T}, \{(a, b)\}, a)$ and $\mathcal{T}'' = \mathcal{S}(\mathcal{T}, \{(a, b)\}, b)$. Let $x \in V(\mathcal{T}') \cup \{b\}$.

- (i) If \mathcal{T}'' is of hyperbolic type of order p, then $g_x|_{V(\mathcal{T}'')}$ is constant times of $g_{p}^{\mathcal{T}''}$;
- (ii) g_b^{T"};
 (iii) if T" is of parabolic type of order p, then g_x|_{V(T")} is a constant function in V(T").

Proof. We denote the *p*-Laplacian (resp. *p*-Green function, and so on) with respect to \mathcal{T}' by $\Delta_p^{\mathcal{T}'}$ (resp. $g_x^{\mathcal{T}'}$, and so on).

First suppose $x \in V(\mathcal{T}')$. Let $\overline{xb} = \{x = x_0, x_1, \dots, x_{l-1}, x_l = b\}$. Let

$$\begin{aligned} \mathcal{T}_{j} &= \mathcal{S}(\mathcal{T}, \{(x_{j-1}, x_{j})\}, x_{j}) & \text{for } j = 1, \dots, l, \\ \mathcal{S}_{j} &= \mathcal{S}(\mathcal{T}, \{(x_{j-1}, x_{j}), (x_{j}, x_{j+1})\}, x_{j}) & \text{for } j = 1, \dots, l-1, \\ \mathcal{S}_{0} &= \mathcal{S}(\mathcal{T}, \{(x_{0}, x_{1})\}, x_{0}). \end{aligned}$$

If \mathcal{T}_l is of hyperbolic type of order p, then we let $u = g_{x_l}^{\mathcal{T}_l}$ in $V(\mathcal{T}_l)$; if \mathcal{T}_l is of parabolic type of order p, then we let u = 1 in $V(\mathcal{T}_l)$. Then u is p-harmonic in $V(\mathcal{T}_l) \setminus \{x_l\}$ and $u \in \mathbf{D}_0^{(p)}(\mathcal{T}_l)$. Let

$$u(x_{l-1}) = u(x_l) - r(x_{l-1}, x_l)\varphi_q(\Delta_p^{\mathcal{I}_l}u(x_l)),$$

where q is the number with 1/p + 1/q = 1. Since φ_q is the inverse function of φ_p , we have that u is p-harmonic at x_l .

If \mathcal{S}_{l-1} is of hyperbolic type of order p, then we let

$$u = \frac{u(x_{l-1})}{g_{x_{l-1}}^{\mathcal{S}_{l-1}}(x_{l-1})} g_{x_{l-1}}^{\mathcal{S}_{l-1}} \quad \text{in } V(\mathcal{S}_{l-1});$$

if \mathcal{S}_{l-1} is of parabolic type of order p, then we let $u = u(x_{l-1})$ in $V(\mathcal{S}_{l-1})$. Then u is p-harmonic in $V(\mathcal{T}_{l-1}) \setminus \{x_{l-1}\}$ and $u \in \mathbf{D}_0^{(p)}(\mathcal{T}_{l-1})$. Repeat this argument and obtain a function u which is p-harmonic in $V \setminus \{x\}$

Repeat this argument and obtain a function u which is p-harmonic in $V \setminus \{x\}$ and $u \in \mathbf{D}_0^{(p)}(\mathcal{T})$. Therefore u is a constant times of g_x . Since $\mathcal{T}_l = \mathcal{T}''$ and $x_l = b$, we have the result in this case.

Next suppose x = b. If \mathcal{T}' is of hyperbolic type of order p, then we let $u = g_a^{\mathcal{T}'}$ in $V(\mathcal{T}')$; if \mathcal{T}' is of parabolic type of order p, then we let u = 1 in $V(\mathcal{T}')$. Then uis p-harmonic in $V(\mathcal{T}') \setminus \{a\}$ and $u \in \mathbf{D}_0^{(p)}(\mathcal{T}')$. Let

$$u(b) = u(a) - r(a, b)\varphi_q(\Delta_p^{\mathcal{T}'}u(a)).$$

Then u is p-harmonic at a.

If \mathcal{T}'' is of hyperbolic type of order p, then we let

$$u = \frac{u(b)}{g_b^{\mathcal{T}''}(b)} g_b^{\mathcal{T}''} \qquad \text{in } V(\mathcal{T}'');$$

if \mathcal{T}'' is of parabolic type of order p, then we let u = u(b) in $V(\mathcal{T}'')$. Then u is p-harmonic in $V \setminus \{b\}$ and $u \in \mathbf{D}_0^{(p)}(\mathcal{T})$. Therefore u is a constant times of g_x , and the result follows.

Lemma 9. For any $x, y, z \in V$ we have

$$H(x,z) = H(x,y)H(y,z).$$

Proof. First assume that y is a vertex on the path \overline{xz} . Let y' be the vertex adjacent to y and on the path \overline{yx} . Let $\mathcal{T}' = \mathcal{S}(\mathcal{T}, \{(y, y')\}, y)$. By Lemma 8 both $g_x|_{V(\mathcal{T}')}$ and $g_y|_{V(\mathcal{T}')}$ are constant times of $g_y^{\mathcal{T}'}$ if \mathcal{T}' is of hyperbolic type of order p, or both are constant functions on $V(\mathcal{T}')$ if \mathcal{T}' is of parabolic type. Therefore

$$g_x|_{V(\mathcal{T}')} = \frac{g_x(y)}{g_y(y)}g_y|_{V(\mathcal{T}')}.$$

Especially

$$g_x(z) = \frac{g_x(y)}{g_y(y)}g_y(z)$$

Similarly we have

$$g_z(x) = \frac{g_z(y)}{g_y(y)}g_y(x).$$

Hence the result follows in this case.

Next we consider the general case. Let w be the intersection vertex among x, y and z, i.e., the vertex which is simultaneously on the three paths \overline{xy} , \overline{yz} and \overline{zx} (see Figure 1). Then the first part implies that

$$H(x, z) = H(x, w)H(w, z), H(x, y) = H(x, w)H(w, y), H(y, z) = H(y, w)H(w, z).$$

Since H(w, y) is the reciprocal of H(y, w), we have the result in the general case. \Box

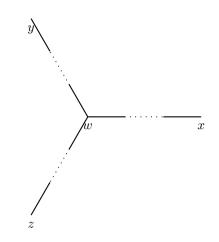


FIGURE 1. The intersection vertex

Let $\mathcal{T} = (V, E, r)$ be a tree of hyperbolic type of order p. Let $(y, z) \in E$ and $\mathcal{S} = \mathcal{S}(\mathcal{T}, \{(y, z)\}, z)$. If \mathcal{S} is of parabolic type, then we call \mathcal{S} a parabolic end of \mathcal{T} .

Lemma 10. Let $\mathcal{T} = (V, E, r)$ be a tree of hyperbolic type of order p. Let $\{S_j\}_j$ be the set of maximal parabolic ends of \mathcal{T} . Let $\mathcal{T}' = (V', E', r')$ be the subtree which is obtained by removing $\bigcup_j S_j$ from \mathcal{T} . Then

$$M(\mathcal{T}) = M(\mathcal{T}').$$

Proof. For each j we can take an edge $(y_j, z_j) \in E$ such that $S_j = S(\mathcal{T}, \{(y_j, z_j)\}, z_j)$. Let $x \in V$. We denote the p-Green function with respect to \mathcal{T}' by $g_x^{\mathcal{T}'}$ Then it is easy to verify that the p-Green function g_x is represented as

$$g_x(y) = g_x^{T'}(y) \quad \text{if } x \in V' \text{ and } y \in V',$$

$$g_x(y) = g_x^{T'}(y_j) \quad \text{if } x \in V' \text{ and } y \in V(\mathcal{S}_j),$$

$$g_x(y) = g_{y_j}^{T'}(y) \quad \text{if } x \in V(\mathcal{S}_j) \text{ and } y \in V',$$

$$g_x(y) = g_{y_j}^{T'}(y_i) \quad \text{if } x \in V(\mathcal{S}_j) \text{ and } y \in V(\mathcal{S}_i) \text{ with } i \neq j,$$

$$g_x(y) = g_w(w) \quad \text{if } x \in V(\mathcal{S}_j) \text{ and } y \in V(\mathcal{S}_j),$$

where w is the intersection vertex among x, y and z_j . Therefore

$$H(x, y) = H^{T'}(x, y) \quad \text{if } x \in V' \text{ and } y \in V',$$

$$H(x, y) = H^{T'}(x, y_j) \quad \text{if } x \in V' \text{ and } y \in V(\mathcal{S}_j),$$

$$H(x, y) = H^{T'}(y_j, y) \quad \text{if } x \in V(\mathcal{S}_j) \text{ and } y \in V',$$

$$H(x, y) = H^{T'}(y_j, y_i) \quad \text{if } x \in V(\mathcal{S}_j) \text{ and } y \in V(\mathcal{S}_i) \text{ with } i \neq j,$$

$$H(x, y) = 1 \quad \text{if } x \in V(\mathcal{S}_j) \text{ and } y \in V(\mathcal{S}_j).$$

This means $M(\mathcal{T}) = M(\mathcal{T}')$.

Proof of Theorem 6. Let $\mathcal{T}_1 = (V_1, E_1, r_1)$ and $\mathcal{T}_2 = (V_2, E_2, r_2)$. By means of Lemma 10 we may assume that both \mathcal{T}_1 and \mathcal{T}_2 are of hyperbolic type of order p.

First we observe that the function $g_{a_1}|_{V_1}$ is *p*-harmonic in $V_1 \setminus \{a_1\}$ and

$$\Delta_p^{\mathcal{I}_1}(g_{a_1}|_{V_1})(a_1) = \Delta_p g_{a_1}(a_1) - \varphi_p(\nabla g_{a_1}(a_1, a_2)) = -1 + \varphi_p(\nabla g_{a_1}(a_2, a_1))$$

Let q be the number with 1/p + 1/q = 1. Then we have that φ_q is the inverse function of φ_p . Therefore

$$\frac{1}{c_0}g_{a_1}|_{V_1} = g_{a_1}^{\mathcal{T}_1},$$

where $c_0 = \varphi_q(1 - \varphi_p(\nabla g_{a_1}(a_2, a_1))))$. Especially

(4)
$$g_{a_1}(x) = c_0 g_{a_1}^{\mathcal{T}_1}(x) \quad \text{for } x \in V_1.$$

Note that c_0 is independent of x.

Let $\{b_1, \ldots, b_{d-1}\}$ be the neighbors of a_1 in \mathcal{T}_1 , where $d = \deg(a_1)$. Let $\mathcal{T}_{1i} = \mathcal{S}(\mathcal{T}_1, \{(a_1, b_i)\}, b_i)$. Let $x \in V_1 \setminus \{a_1\}$ and $\{a_1 = x_0, x_1, \ldots, x_{l-1}, x_l = x\}$ be the path $\overline{a_1x}$. Then $x_1 = b_{i_0}$ for some i_0 . For $i \neq i_0$ the function $g_{x_1}|_{V(\mathcal{T}_{1i})}$ is p-harmonic in $V(\mathcal{T}_{1i}) \setminus \{b_i\}$ and

$$\Delta_p^{\mathcal{T}_{1i}}(g_{x_1}|_{V(\mathcal{T}_{1i})})(b_i) = \Delta_p g_{x_1}(b_i) - \varphi_p(\nabla g_{x_1}(b_i, a_1)) = -\varphi_p(\nabla g_{x_1}(b_i, a_1)).$$

Therefore

$$\frac{1}{\nabla g_{x_1}(b_i, a_1)} g_{x_1}|_{V(\mathcal{T}_{1i})} = g_{b_i}^{\mathcal{T}_{1i}},$$

and hence

$$g_{x_1}(a_1) = g_{x_1}(b_i) + r(a_1, b_i) \nabla g_{x_1}(b_i, a_1)$$

= $\nabla g_{x_1}(b_i, a_1) (g_{b_i}^{\mathcal{T}_{1i}}(b_i) + r(a_1, b_i)).$

Similarly we have

$$g_x(a_1) = \nabla g_x(b_i, a_1) (g_{b_i}^{\mathcal{I}_{1i}}(b_i) + r(a_1, b_i)),$$

$$g_{x_1}^{\mathcal{I}_1}(a_1) = \nabla g_{x_1}^{\mathcal{I}_1}(b_i, a_1) (g_{b_i}^{\mathcal{I}_{1i}}(b_i) + r(a_1, b_i)),$$

$$g_x^{\mathcal{I}_1}(a_1) = \nabla g_x^{\mathcal{I}_1}(b_i, a_1) (g_{b_i}^{\mathcal{I}_{1i}}(b_i) + r(a_1, b_i)).$$

Therefore

(5)
$$\frac{g_{x_1}(a_1)}{\nabla g_{x_1}(b_i, a_1)} = \frac{g_x(a_1)}{\nabla g_x(b_i, a_1)} = \frac{g_{x_1}^{\mathcal{T}_1}(a_1)}{\nabla g_{x_1}^{\mathcal{T}_1}(b_i, a_1)} = \frac{g_x^{\mathcal{T}_1}(a_1)}{\nabla g_x^{\mathcal{T}_1}(b_i, a_1)}.$$

Also we have

$$\frac{1}{\nabla g_{x_1}(a_2, a_1)} g_{x_1}|_{V_2} = g_{a_2}^{\mathcal{T}_2},$$

and hence

$$g_{x_1}(a_1) = \nabla g_{x_1}(a_2, a_1)(g_{a_2}^{\mathcal{T}_2}(a_2) + r(a_1, a_2)).$$

Similarly we have

$$g_x(a_1) = \nabla g_x(a_2, a_1)(g_{a_2}^{\mathcal{T}_2}(a_2) + r(a_1, a_2)).$$

Therefore

(6)
$$\frac{g_{x_1}(a_1)}{\nabla g_{x_1}(a_2, a_1)} = \frac{g_x(a_1)}{\nabla g_x(a_2, a_1)}$$

Since $\Delta_p g_x(a_1) = 0$ and $\Delta_p g_{x_1}(a_1) = 0$, we have

$$\varphi_p(\nabla g_x(a_1, x_1)) = \sum_{i \neq i_0} \varphi_p(\nabla g_x(b_i, a_1)) + \varphi_p(\nabla g_x(a_2, a_1)),$$
$$\varphi_p(\nabla g_{x_1}(a_1, x_1)) = \sum_{i \neq i_0} \varphi_p(\nabla g_{x_1}(b_i, a_1)) + \varphi_p(\nabla g_{x_1}(a_2, a_1)).$$

Using (5) and (6), we have

$$\nabla g_x(b_i, a_1) = \frac{g_x(a_1)}{g_{x_1}(a_1)} \nabla g_{x_1}(b_i, a_1),$$

$$\nabla g_x(a_2, a_1) = \frac{g_x(a_1)}{g_{x_1}(a_1)} \nabla g_{x_1}(a_2, a_1),$$

and hence

(7)
$$\frac{\nabla g_x(a_1, x_1)}{\nabla g_{x_1}(a_1, x_1)} = \frac{g_x(a_1)}{g_{x_1}(a_1)}.$$

Similarly, since $\Delta_p^{\mathcal{T}_1} g_x^{\mathcal{T}_1}(a_1) = 0$ and $\Delta_p^{\mathcal{T}_1} g_{x_1}^{\mathcal{T}_1}(a_1) = 0$, we have

$$\varphi_p(\nabla g_x^{\mathcal{T}_1}(a_1, x_1)) = \sum_{i \neq i_0} \varphi_p(\nabla g_x^{\mathcal{T}_1}(b_i, a_1)),$$
$$\varphi_p(\nabla g_{x_1}^{\mathcal{T}_1}(a_1, x_1)) = \sum_{i \neq i_0} \varphi_p(\nabla g_{x_1}^{\mathcal{T}_1}(b_i, a_1)).$$

Using (5), we have

(8)
$$\frac{\nabla g_x^{T_1}(a_1, x_1)}{\nabla g_{x_1}^{T_1}(a_1, x_1)} = \frac{g_x^{T_1}(a_1)}{g_{x_1}^{T_1}(a_1)}$$

Combining (7) and (8), since $x_1 = b_{i_0}$, we have

(9)
$$\frac{\nabla g_x(a_1, x_1)}{\nabla g_x^{T_1}(a_1, x_1)} = c_{i_0} \frac{g_x(a_1)}{g_x^{T_1}(a_1)},$$

where

$$c_j = \frac{g_{b_j}^{\mathcal{T}_1}(a_1)}{g_{b_j}(a_1)} \frac{\nabla g_{b_j}(a_1, b_j)}{\nabla g_{b_j}^{\mathcal{T}_1}(a_1, b_j)}$$

If we put $c = \max(c_1, \ldots, c_{d-1}, c_1^{-1}, \ldots, c_{d-1}^{-1})$, then c is independent of x. Now we obtain by (9)

$$g_x(x_1) = g_x(a_1) + r(a_1, x_1) \nabla g_x(a_1, x_1)$$

= $g_x(a_1) + r(a_1, x_1) c_{i_0} \frac{g_x(a_1)}{g_x^{\mathcal{T}_1}(a_1)} \nabla g_x^{\mathcal{T}_1}(a_1, x_1)$

$$\leq c \frac{g_x(a_1)}{g_x^{\mathcal{T}_1}(a_1)} (g_x^{\mathcal{T}_1}(a_1) + r(a_1, x_1) \nabla g_x^{\mathcal{T}_1}(a_1, x_1)) = c \frac{g_x(a_1)}{g_x^{\mathcal{T}_1}(a_1)} g_x^{\mathcal{T}_1}(x_1).$$

Therefore

(10)
$$\frac{g_x(x_1)}{g_x^{T_1}(x_1)} \le c \frac{g_x(a_1)}{g_x^{T_1}(a_1)}.$$

Similarly we have

(11)
$$\frac{g_x(x_1)}{g_x^{T_1}(x_1)} \ge c^{-1} \frac{g_x(a_1)}{g_x^{T_1}(a_1)}.$$

Next let $y \in V_1$ with $y \sim x_1$ and $y \neq a_1, x_2$. Let $\mathcal{T}_{1y} = \mathcal{S}(\mathcal{T}_1, \{(x_1, y)\}, y)$. Then we have

$$\frac{1}{\nabla g_x(y,x_1)} g_x|_{V(\mathcal{T}_{1y})} = g_y^{\mathcal{T}_{1y}},$$

and therefore

$$g_x(x_1) = \nabla g_x(y, x_1)(g_y^{\mathcal{T}_{1y}}(y) + r(y, x_1)).$$

Similarly we have

$$g_x^{\mathcal{T}_1}(x_1) = \nabla g_x^{\mathcal{T}_1}(y, x_1)(g_y^{\mathcal{T}_{1y}}(y) + r(y, x_1)).$$

Combined with (10) and (11), we have

(12)
$$c^{-1}\frac{g_x(a_1)}{g_x^{\mathcal{T}_1}(a_1)} \le \frac{\nabla g_x(y, x_1)}{\nabla g_x^{\mathcal{T}_1}(y, x_1)} \le c\frac{g_x(a_1)}{g_x^{\mathcal{T}_1}(a_1)}.$$

Since $\Delta_p g_x(x_1) = 0$ and $\Delta_p^{\mathcal{T}_1} g_x^{\mathcal{T}_1}(x_1) = 0$, we have

$$\varphi_p(\nabla g_x(x_1, x_2)) = \sum_{\substack{y \sim x_1 \\ y \neq a_1, x_2}} \varphi_p(\nabla g_x(y, x_1)) + \varphi_p(\nabla g_x(a_1, x_1)),$$
$$\varphi_p(\nabla g_x^{\mathcal{T}_1}(x_1, x_2)) = \sum_{\substack{y \sim x_1 \\ y \neq a_1, x_2}} \varphi_p(\nabla g_x^{\mathcal{T}_1}(y, x_1)) + \varphi_p(\nabla g_x^{\mathcal{T}_1}(a_1, x_1)).$$

Formulas (9) and (12) imply that

$$c^{-1}\frac{g_x(a_1)}{g_x^{T_1}(a_1)} \le \frac{\nabla g_x(x_1, x_2)}{\nabla g_x^{T_1}(x_1, x_2)} \le c\frac{g_x(a_1)}{g_x^{T_1}(a_1)}.$$

Using (10), we have

$$g_x(x_2) = g_x(x_1) + r(x_1, x_2) \nabla g_x(x_1, x_2)$$

$$\leq c \frac{g_x(a_1)}{g_x^{T_1}(a_1)} (g_x^{T_1}(x_1) + r(x_1, x_2) \nabla g_x^{T_1}(x_1, x_2))$$

$$= c \frac{g_x(a_1)}{g_x^{T_1}(a_1)} g_x^{T_1}(x_2),$$

and therefore

$$\frac{g_x(x_2)}{g_x^{\mathcal{T}_1}(x_2)} \le c \frac{g_x(a_1)}{g_x^{\mathcal{T}_1}(a_1)}.$$

Also we have by (11)

$$\frac{g_x(x_2)}{g_x^{T_1}(x_2)} \ge c^{-1} \frac{g_x(a_1)}{g_x^{T_1}(a_1)}$$

We repeat these arguments and obtain

(13)
$$c^{-1}\frac{g_x(a_1)}{g_x^{T_1}(a_1)} \le \frac{\nabla g_x(x_{l-1}, x)}{\nabla g_x^{T_1}(x_{l-1}, x)} \le c\frac{g_x(a_1)}{g_x^{T_1}(a_1)},$$
$$c^{-1}\frac{g_x(a_1)}{g_x^{T_1}(a_1)} \le \frac{g_x(x)}{g_x^{T_1}(x)} \le c\frac{g_x(a_1)}{g_x^{T_1}(a_1)},$$
(14)
$$c^{-1}\frac{g_x(a_1)}{g_x^{T_1}(a_1)} \le \frac{\nabla g_x(z, x)}{\nabla g_x^{T_1}(z, x)} \le c\frac{g_x(a_1)}{g_x^{T_1}(a_1)} \quad \text{for } z \sim x \text{ with } z \neq x_{l-1}.$$

We have

$$\sum_{\substack{z \sim x \\ z \neq x_{l-1}}} \varphi_p(\nabla g_x(z, x)) + \varphi_p(\nabla g_x(x_{l-1}, x)) = -\Delta_p g_x(x) = 1,$$
$$\sum_{\substack{z \sim x \\ z \neq x_{l-1}}} \varphi_p(\nabla g_x^{\mathcal{T}_1}(z, x)) + \varphi_p(\nabla g_x^{\mathcal{T}_1}(x_{l-1}, x)) = -\Delta_p^{\mathcal{T}_1} g_x^{\mathcal{T}_1}(x) = 1.$$

Equations (13) and (14) imply that

$$\varphi_p\left(c^{-1}\frac{g_x(a_1)}{g_x^{\mathcal{T}_1}(a_1)}\right) \le 1 \le \varphi_p\left(c\frac{g_x(a_1)}{g_x^{\mathcal{T}_1}(a_1)}\right).$$

This means that

$$c^{-1} \le \frac{g_x(a_1)}{g_x^{T_1}(a_1)} \le c.$$

Hence, combining with (4), we have

$$c^{-1}c_0^{-1}H^{\mathcal{T}_1}(x,a_1) \le H(x,a_1) \le cc_0^{-1}H^{\mathcal{T}_1}(x,a_1).$$

We obtain similarly that there are constants c' and c'_0 such that

$$c'^{-1}c'_0^{-1}H^{\mathcal{T}_2}(x,a_2) \le H(x,a_2) \le c'c'_0^{-1}H^{\mathcal{T}_2}(x,a_2) \quad \text{for } x \in V_2.$$

Therefore Lemma 9 implies that, if $x, y \in V_1$, then

$$H(x,y) = H(x,a_1)H(a_1,y) \le cc_0^{-1}H^{\mathcal{T}_1}(x,a_1)cc_0H^{\mathcal{T}_1}(a_1,y)$$

= $c^2H^{\mathcal{T}_1}(x,y),$

and similarly

$$H(x,y) \ge c^{-2} H^{\mathcal{T}_1}(x,y);$$

if $x \in V_1$ and $y \in V_2$, then

$$H(x,y) = H(x,a_1)H(a_1,a_2)H(a_2,y)$$

$$\leq cc_0^{-1}H^{\mathcal{T}_1}(x,a_1) \times H(a_1,a_2) \times c'c'_0H^{\mathcal{T}_2}(a_2,y),$$

and similarly

$$H(x,y) \ge c^{-1}c'^{-1}c_0^{-1}c'_0H^{\mathcal{T}_1}(x,a_1)H(a_1,a_2)H^{\mathcal{T}_2}(a_2,y).$$

These imply the result.

4. Proof of Theorem 7

Lemma 11. Let $\mathcal{T} = (V, E, r)$ be a tree. Let $a, x \in V$ and $\{a = x_0, x_1, \ldots, x_{l-1}, x_l = x\}$ the path \overline{ax} . Let $r_j = r(x_{j-1}, x_j)$ and

$$\begin{aligned} \mathcal{T}_{j}^{-} &= \mathcal{S}(\mathcal{T}, \{(x_{j}, x_{j+1})\}, x_{j}) & \text{for } j = 0, \dots, l-1, \\ \mathcal{T}_{j}^{+} &= \mathcal{S}(\mathcal{T}, \{(x_{j-1}, x_{j})\}, x_{j}) & \text{for } j = 1, \dots, l. \end{aligned}$$

Suppose that \mathcal{T}_j^- and \mathcal{T}_j^+ are of hyperbolic type of order p. Let

$$\lambda_j = g_{x_j}^{\mathcal{T}_j^-}(x_j), \qquad \rho_j = g_{x_j}^{\mathcal{T}_j^+}(x_j).$$

Then

$$H(a,x)^{p-1} = \prod_{j=1}^{l} \frac{(\lambda_{j-1} + r_j)^{p-1} + \rho_j^{p-1}}{\lambda_{j-1}^{p-1} + (\rho_j + r_j)^{p-1}}.$$

Proof. Since

$$g_a|_{V(\mathcal{T}_j^+)} = \frac{g_a(x_j)}{\frac{\mathcal{T}_j^+}{g_{x_j}}(x_j)}g_{x_j}^{\mathcal{T}_j^+},$$

we have

$$\nabla g_a(x_j, y) = \frac{g_a(x_j)}{\rho_j} \nabla g_{x_j}^{\mathcal{T}_j^+}(x_j, y) \quad \text{for } y \in V(\mathcal{T}_j^+) \text{ with } y \sim x_j.$$

Since $\Delta_p g_a(x_j) = 0$ and $\Delta_p^{\mathcal{T}_j^+} g_{x_j}^{\mathcal{T}_j^+}(x_j) = -1$, we have

$$\varphi_p(\nabla g_a(x_j, x_{j-1})) + \sum_{\substack{y \in V(\mathcal{T}_j^+) \\ y \sim x_j}} \varphi_p(\nabla g_a(x_j, y)) = 0,$$
$$\sum_{\substack{y \in V(\mathcal{T}_j^+) \\ y \sim x_j}} \varphi_p(\nabla g_{x_j}^{\mathcal{T}_j^+}(x_j, y)) = -1.$$

Therefore

$$\varphi_p(\nabla g_a(x_j, x_{j-1})) - \varphi_p(\frac{g_a(x_j)}{\rho_j}) = 0,$$

or

$$\frac{g_a(x_{j-1}) - g_a(x_j)}{r_j} = \frac{g_a(x_j)}{\rho_j},$$

and hence

$$g_a(x_j) = \frac{\rho_j}{\rho_j + r_j} g_a(x_{j-1}).$$

Therefore

$$g_a(x) = \left(\prod_{j=1}^l \frac{\rho_j}{\rho_j + r_j}\right)g_a(a).$$

Similarly we have

$$g_x(a) = \left(\prod_{j=1}^l \frac{\lambda_{j-1}}{\lambda_{j-1} + r_j}\right)g_x(x).$$

Therefore

(15)
$$H(a,x) = \frac{g_a(a)}{\lambda_0(\rho_1 + r_1)} \left(\prod_{j=1}^{l-1} \frac{\rho_j(\lambda_{j-1} + r_j)}{\lambda_j(\rho_{j+1} + r_{j+1})}\right) \frac{(\lambda_{l-1} + r_l)\rho_l}{g_x(x)}$$

Since

$$g_{x_j}|_{V(\mathcal{T}_{j-1}^-)} = \frac{g_{x_j}(x_{j-1})}{\frac{\mathcal{T}_{j-1}^-}{g_{x_{j-1}}(x_{j-1})}} g_{x_{j-1}}^{\mathcal{T}_{j-1}^-},$$

we have

$$\nabla g_{x_j}(x_{j-1}, y) = \frac{g_{x_j}(x_{j-1})}{\lambda_{j-1}} \nabla g_{x_{j-1}}^{\mathcal{T}_{j-1}^-}(x_{j-1}, y)$$

for $y \in V(\mathcal{T}_{j-1}^{-})$ with $y \sim x_{j-1}$. Therefore $\Delta_p g_{x_j}(x_{j-1}) = 0$ and $\Delta_p^{\mathcal{T}_{j-1}^{-}} g_{x_{j-1}}^{\mathcal{T}_{j-1}^{-}}(x_{j-1}) = -1$ imply that

$$\varphi_p(\nabla g_{x_j}(x_{j-1}, x_j)) - \varphi_p(\frac{g_{x_j}(x_{j-1})}{\lambda_{j-1}}) = 0,$$

that is

$$g_{x_j}(x_{j-1}) = \frac{\lambda_{j-1}}{\lambda_{j-1} + r_j} g_{x_j}(x_j).$$

Hence

(

16)
$$\nabla g_{x_j}(x_j, x_{j-1}) = -\frac{1}{\lambda_{j-1} + r_j} g_{x_j}(x_j).$$

Next since

$$g_{x_j}|_{V(\mathcal{T}_j^+)} = \frac{g_{x_j}(x_j)}{g_{x_j}^{\mathcal{T}_j^+}(x_j)} g_{x_j}^{\mathcal{T}_j^+},$$

we have similarly

(17)
$$\nabla g_{x_j}(x_j, y) = \frac{g_{x_j}(x_j)}{\rho_j} \nabla g_{x_j}^{\mathcal{T}_j^+}(x_j, y) \quad \text{for } y \in V(\mathcal{T}_j^+) \text{ with } y \sim x_j.$$

Since $\Delta_p g_{x_j}(x_j) = -1$ and $\Delta_p^{\mathcal{I}_j^+} g_{x_j}^{\mathcal{I}_j^+}(x_j) = -1$, we have by (16) and (17)

$$-\varphi_p(\frac{g_{x_j}(x_j)}{\lambda_{j-1}+r_j})-\varphi_p(\frac{g_{x_j}(x_j)}{\rho_j})=-1.$$

Therefore

$$\frac{1}{g_{x_j}(x_j)^{p-1}} = \frac{1}{(\lambda_{j-1} + r_j)^{p-1}} + \frac{1}{\rho_j^{p-1}} \quad \text{for } j = 1, \dots, l.$$

Similarly we have

$$\frac{1}{g_{x_j}(x_j)^{p-1}} = \frac{1}{\lambda_j^{p-1}} + \frac{1}{(\rho_{j+1} + r_{j+1})^{p-1}} \quad \text{for } j = 0, \dots, l-1.$$

Hence

$$\left(\frac{g_a(a)}{\lambda_0(\rho_1+r_1)}\right)^{p-1} = \frac{1}{\lambda_0^{p-1} + (\rho_1+r_1)^{p-1}},$$

$$\left(\frac{\rho_j(\lambda_{j-1}+r_j)}{\lambda_j(\rho_{j+1}+r_{j+1})}\right)^{p-1} = \frac{\rho_j^{p-1} + (\lambda_{j-1}+r_j)^{p-1}}{\lambda_j^{p-1} + (\rho_{j+1}+r_{j+1})^{p-1}},$$

$$\left(\frac{(\lambda_{l-1}+r_l)\rho_l}{g_x(x)}\right)^{p-1} = (\lambda_{l-1}+r_l)^{p-1} + \rho_l^{p-1}.$$

Combining these and (15) we have the result.

Lemma 12. Let $V = \{x_j\}_{j=0}^{\infty}$, $E = \{(x_j, x_{j+1})\}_{j=0}^{\infty}$ and r a resistance.

- (i) If $\sum_{j=0}^{\infty} r(x_j, x_{j+1}) = \infty$, then (V, E, r) is of parabolic type of order p; (ii) If $\sum_{j=0}^{\infty} r(x_j, x_{j+1}) < \infty$, then (V, E, r) is of hyperbolic type of order p and has a symmetric p-Green function.

Proof. We shall show only (ii). It is easy to see that the *p*-Green function g_{x_m} is represented as

$$g_{x_m}(x_l) = \sum_{j=\max(l,m)}^{\infty} r(x_j, x_{j+1})$$

Therefore $H(x_m, x_l) = 1$.

Lemma 13. For $0 \le s, t \le M$ we have

$$2^{-|p-2|} \le \frac{t^{p-1} + (M-t)^{p-1}}{s^{p-1} + (M-s)^{p-1}} \le 2^{|p-2|}.$$

Proof. It is clearly that, if p < 2, then we have $M^{p-1} \leq t^{p-1} + (M-t)^{p-1} \leq 2^{2-p}M^{p-1}$; if $p \geq 2$, then we have $2^{2-p}M^{p-1} \leq t^{p-1} + (M-t)^{p-1} \leq M^{p-1}$. This leads to the result.

Lemma 14. Let $V = \{x_j\}_{j=-\infty}^{\infty}$, $E = \{(x_j, x_{j+1})\}_{j=-\infty}^{\infty}$ and r a resistance. Let $S^+ = \sum_{j=0}^{\infty} r(x_j, x_{j+1})$ and $S^- = \sum_{j=-\infty}^{-1} r(x_j, x_{j+1})$.

- (i) If both S^+ and S^- diverge, then (V, E, r) is of parabolic type of order p;
- (ii) If one of S^+ and S^- diverges and the other converges, then (V, E, r) is of hyperbolic type of order p and has a symmetric p-Green function;
- (iii) If both S^+ and S^- converge, then (V, E, r) is of hyperbolic type of order p and has a quasi-symmetric p-Green function.

Proof. Lemma 10 reduces (ii) to Lemma 12 (ii). We shall show (iii). We use the same notation as in Lemma 11. Then we easily have $\rho_m = \sum_{j=m}^{\infty} r(x_j, x_{j+1})$ and $\lambda_m = \sum_{j=-\infty}^{m-1} r(x_j, x_{j+1})$. Also we have that $\lambda_{m-1} + r_m = \lambda_m$ and $\rho_m + r_m = \rho_{m-1}$. Therefore Lemma 11 implies that, if l > 0, then

$$H(x_0, x_l)^{p-1} = \frac{\rho_l^{p-1} + \lambda_l^{p-1}}{\rho_0^{p-1} + \lambda_0^{p-1}}.$$

Since $M = \rho_m + \lambda_m$ is independent of *m*, we have by Lemma 13

$$2^{-|p-2|} \le H(x_0, x_l)^{p-1} \le 2^{|p-2|}$$

The case l < 0 can be treated similarly.

Proof of Theorem 7 (i). Let \mathcal{T} be a tree as in Theorem 7 (i). Using Lemma 10, we may assume that there are no parabolic ends. Then \mathcal{T} is represented as the union of finitely many trees in Lemmas 12 and 14. Since they have quasi-symmetric p-Green functions for any resistances, \mathcal{T} also has quasi-symmetric p-Green functions by Theorem 6.

Lemma 15. Let q be the number with 1/p + 1/q = 1. Let $\mathcal{T} = (V, E, r)$ be a tree such that $\deg(x) \ge 3$ for each x and

$$r(x,y) = \frac{\psi(x)\psi(y) - 1}{(\psi(x) + 1)(\psi(y) + 1)},$$

where $\psi(x) = (\deg(x) - 1)^{q-1}$. Then \mathcal{T} has a quasi-symmetric p-Green function.

Proof. Let x, y be distinct vertices and let $\{x = x_0, x_1, \ldots, x_{l-1}, x_l = y\}$ be the path \overline{xy} . It is easy to see that the *p*-Green function g_x is represented as

$$g_x(y) = \frac{1}{\deg(x)^{q-1}} \frac{1}{\psi(x_1) \cdots \psi(x_{l-1})} \frac{1}{\psi(y) + 1},$$

$$g_x(x) = \frac{1}{\deg(x)^{q-1}} \frac{\psi(x)}{\psi(x) + 1}.$$

Therefore

$$H(x,y) = \frac{\deg(y)^{q-1}}{\deg(x)^{q-1}} \frac{\psi(x) + 1}{\psi(y) + 1} = \frac{(1 - \deg(x)^{-1})^{q-1} + \deg(x)^{1-q}}{(1 - \deg(y)^{-1})^{q-1} + \deg(y)^{1-q}}.$$

Using Lemma 13 for q instead of p, we have

$$2^{-|q-2|} \le H(x,y) \le 2^{|q-2|}.$$

Hence the result follows.

Lemma 16. Let $\mathcal{T} = (V, E, r)$ be a tree of hyperbolic type of order p. Let $x_0, y_0 \in V$ and $\{x_0, x_1, \ldots, x_{l-1}, x_l = y_0\}$ the path $\overline{x_0y_0}$. Suppose that $\deg(x_0) \geq 3$, $\deg(y_0) \geq 3$ and $\deg(x_j) = 2$ for $j = 1, \ldots, l-1$. Then

$$2^{-|q-2|}H(x_0, y_0) \le H(x_0, x_j) \le 2^{|q-2|}H(x_0, y_0)$$

for j = 1, ..., l - 1, where q is the number with 1/p + 1/q = 1.

Proof. Let $\mathcal{T}_1 = \mathcal{S}(\mathcal{T}, \{(x_0, x_1)\}, x_0)$ and $\mathcal{T}_2 = \mathcal{S}(\mathcal{T}, \{(x_{l-1}, x_l)\}, y_0)$. We denote

$$u_1(j) = g_{x_0}^{\mathcal{T}_1}(x_0) + \sum_{i=1}^{J} r(x_{i-1}, x_i),$$
$$u_2(j) = g_{y_0}^{\mathcal{T}_2}(y_0) + \sum_{i=j+1}^{l} r(x_{i-1}, x_i).$$

75

Then it is easy to see that the *p*-Green function with pole at x_j is given by

$$g_{x_j}(x_j) = \frac{1}{(u_1(j)^{1-p} + u_2(j)^{1-p})^{q-1}},$$

$$g_{x_j}(x_k) = \frac{u_1(k)}{u_1(j)} g_{x_j}(x_j) \quad \text{if } 0 \le k < j,$$

$$g_{x_j}(x) = \frac{g_{x_0}^{\mathcal{I}_1}(x)}{u_1(j)} g_{x_j}(x_j) \quad \text{if } x \in V(\mathcal{T}_1),$$

$$g_{x_j}(x_k) = \frac{u_2(k)}{u_2(j)} g_{x_j}(x_j) \quad \text{if } j < k \le l,$$

$$g_{x_j}(x) = \frac{g_{y_0}^{\mathcal{I}_2}(x)}{u_2(j)} g_{x_j}(x_j) \quad \text{if } x \in V(\mathcal{T}_2).$$

Similarly we have

$$g_{x_0}(x_0) = \frac{1}{(u_1(0)^{1-p} + u_2(0)^{1-p})^{q-1}},$$

$$g_{x_0}(x_j) = \frac{u_2(j)}{u_2(0)}g_{x_0}(x_0).$$

Therefore

$$H(x_0, x_j)^{p-1} = \frac{u_1(j)^{p-1} + u_2(j)^{p-1}}{u_1(0)^{p-1} + u_2(0)^{p-1}}.$$

Similarly we have

$$H(x_0, y_0)^{p-1} = \frac{u_1(l)^{p-1} + u_2(l)^{p-1}}{u_1(0)^{p-1} + u_2(0)^{p-1}}$$

Hence

$$\left(\frac{H(x_0, x_j)}{H(x_0, y_0)}\right)^{p-1} = \frac{u_1(j)^{p-1} + u_2(j)^{p-1}}{u_1(l)^{p-1} + u_2(l)^{p-1}}.$$

Since $u_1(j) + u_2(j)$ is independent of j, Lemma 13 implies that

$$2^{-|p-2|} \le \left(\frac{H(x_0, x_j)}{H(x_0, y_0)}\right)^{p-1} \le 2^{|p-2|}$$

.

Hence the result follows.

Proof of Theorem 7 (iia). Let $\mathcal{T} = (V, E, r)$ be a tree which has infinitely many $x \in V$ such that $\deg(x) \ge 3$. If there is a subtree such that either

$$\deg(x_0) \ge 3, \deg(x_1) = 2, \dots, \deg(x_l) = 2, \deg(x_{l+1}) = 1$$

for some $l \ge 0$, or

$$\deg(x_0) \ge 3, \deg(x_1) = 2, \dots, \deg(x_l) = 2, \dots$$

then we may remove it from \mathcal{T} since we can make it a parabolic end. Let $\{\{z_0^i, z_1^i, \ldots, z_{m_i-1}^i, z_{m_i}^i\}\}_i$ be all of paths such that

$$\deg(z_0^i) \ge 3, \deg(z_1^i) = 2, \dots, \deg(z_{m_i-1}^i) = 2, \deg(z_{m_i}^i) \ge 3$$

for some $m_i \geq 2$. Let $V' = V \setminus \{z_j^i\}_{i,j}$ and $E' = E \cup \{(z_0^i, z_{l_i}^i)\}_i \setminus \{(z_{j-1}^i, z_j^i)\}_{i,j}$. Then $\deg^{(V',E')}(x) \geq 3$ for all $x \in V'$. Therefore Lemma 15 shows that there is a resistance r' on E' such that $\mathcal{T}' = (V', E', r')$ has a quasi-symmetric *p*-Green function. Let r be a resistance on E such that r = r' on $E \cap E'$ and

$$r'(z_0^i, z_{m_i}^i) = \sum_{j=1}^{m_i} r(z_{j-1}^i, z_j^i)$$
 for each *i*.

Let $x \in V'$. Then it is easy to see that the *p*-Green function g_x is

$$g_x = g_x^{\mathcal{T}'} \quad \text{on } V',$$

$$g_x(z_k^i) = g_x^{\mathcal{T}'}(z_0^i) + \nabla g_x^{\mathcal{T}'}(z_0^i, z_{m_i}^i) \sum_{j=1}^k r(z_{j-1}^i, z_j^i).$$

Therefore

$$H(x,y) = H^{T'}(x,y) \quad \text{for } x, y \in V'.$$

Hence Lemma 16 implies that, if $x \in V'$ and $y = z_j^i$, then

$$H(x,y) = H(x,z_0^i)H(z_0^i,y) \le H^{\mathcal{T}'}(x,z_0^i) \cdot 2^{|q-2|} H^{\mathcal{T}'}(z_0^i,z_{m_i}^i)$$
$$= 2^{|q-2|} H^{\mathcal{T}'}(x,z_{m_i}^i);$$

if $x = z_j^i$ and $y = z_l^k$, then

$$\begin{split} H(x,y) &= H(x,z_{m_i}^i)H(z_{m_i}^i,z_0^k)H(z_0^k,y) \\ &\leq 2^{|q-2|}H^{\mathcal{T}'}(z_0^i,z_{m_i}^i)\cdot H^{\mathcal{T}'}(z_{m_i}^i,z_0^k)\cdot 2^{|q-2|}H^{\mathcal{T}'}(z_0^k,z_{m_k}^k) \\ &= 2^{2|q-2|}H^{\mathcal{T}'}(z_0^i,z_{m_k}^k). \end{split}$$

Therefore

$$M(\mathcal{T}) \le 2^{2|q-2|} M(\mathcal{T}').$$

This completes the proof.

Lemma 17. Let $\mathcal{T}_0 = (V_0, E_0, r_0)$, $\mathcal{T}_j = (V_j, E_j, r_j)$ and $\mathcal{T}'_j = (V'_j, E'_j, r'_j)$ for $j \ge 1$. Let $a_j \in V_0$, $b_j \in V_j$ and $b'_j \in V'_j$. Let ρ_j be positive numbers. Let $r = r_0$ on E_0 , $r = r_j$ on E_j and $r(a_j, b_j) = \rho_j$. Let $r' = r_0$ on E_0 , $r' = r'_j$ on E_j and $r'(a_j, b'_j) = \rho_j$. Let

$$\mathcal{T} = (V_0 \cup \bigcup_j V_j, E_0 \cup \bigcup_j E_j \cup \{(a_j, b_j)\}_j, r),$$
$$\mathcal{T}' = (V_0 \cup \bigcup_j V'_j, E_0 \cup \bigcup_j E'_j \cup \{(a_j, b'_j)\}_j, r').$$

If $g_{b_j}^{\mathcal{T}_j}(b_j) = g_{b'_j}^{\mathcal{T}'_j}(b'_j)$ for all j, then $g_x(y) = g_x^{\mathcal{T}'}(y)$ for $x, y \in V_0$. *Proof.* For $x \in V_0$ we have

$$g_x|_{V_j} = rac{g_x(b_j)}{g_{b_j}^{\mathcal{T}_j}(b_j)} g_{b_j}^{\mathcal{T}_j}.$$

Therefore

$$\nabla g_x(b_j, y) = \frac{g_x(b_j)}{g_{b_j}^{\mathcal{T}_j}(b_j)} \nabla g_{b_j}^{\mathcal{T}_j}(b_j, y) \quad \text{for } y \in V_j \text{ with } y \sim b_j.$$

Since $\Delta_p g_x(b_j) = 0$ and $\Delta_p^{T_j} g_{b_j}^{T_j}(b_j) = -1$, we have

$$\varphi_p(\nabla g_x(b_j, a_j)) - \varphi_p(\frac{g_x(b_j)}{g_{b_j}^{\mathcal{T}_j}(b_j)}) = 0,$$

and hence

$$\frac{g_x(a_j) - g_x(b_j)}{\rho_j} = \frac{g_x(b_j)}{g_{b_j}^{\mathcal{T}_j}(b_j)},$$

that is

$$g_x(b_j) = \frac{g_{b_j}^{T_j}(b_j)}{\rho_j + g_{b_j}^{T_j}(b_j)} g_x(a_j).$$

Therefore it is easy to see that the $p\text{-}\mathrm{Green}$ function $g_x^{\mathcal{T}'}$ is

$$g_x^{T'} = g_x \qquad \text{in } V_0,$$

$$g_x^{T'} = \frac{g_x(b_j)}{g_{b'_j}^{T'_j}(b'_j)} g_{b'_j}^{T'_j} \qquad \text{in } V'_j.$$

Hence the result follows.

Lemma 18. Let α , β , and γ be the numbers with $0 < \alpha, \beta, \gamma < 1$. Let a, b, and c be the positive numbers such that

(18)
$$a = \left(\frac{(1-\beta)^{p-1} + \beta^{p-1}(1-\alpha)^{p-1}}{(1-\alpha)^{p-1} + \alpha^{p-1}(1-\beta)^{p-1}}\right)^{q-1} \frac{\alpha}{\beta},$$
$$b = \left(\frac{(1-\beta)^{p-1} + \beta^{p-1}(1-\alpha)^{p-1}}{1-\alpha^{p-1}\beta^{p-1}}\right)^{q-1} \frac{(1-\gamma)\alpha}{(1-\beta)(1-\alpha)},$$
$$c = \frac{\alpha}{((1-\alpha)^{p-1} + \alpha^{p-1}(1-\beta)^{p-1})^{q-1}},$$

where q is the number with 1/p + 1/q = 1. Let $\mathcal{T} = (V, E, r)$ be a tree (as shown in Figure 2) such that

$$V = \{x_l, y_{l,k}\}_{l \in \mathbb{Z}, k \in \mathbb{N}},$$

$$E = \{(x_{l-1}, x_l), (x_l, y_{l,1}), (y_{l,k}, y_{l,k+1})\}_{l \in \mathbb{Z}, k \in \mathbb{N}},$$

$$r(x_{l-1}, x_l) = a^l, \qquad r(x_l, y_{l,1}) = a^l b, \qquad r(y_{l,k}, y_{l,k+1}) = a^l b \gamma^k.$$

If $p \neq 2$ and $\alpha \neq \beta$, then \mathcal{T} does not have a quasi-symmetric p-Green function. More precisely, we have

$$\sup_{l\in\mathbb{Z}}H(x_0,x_l)=\infty.$$

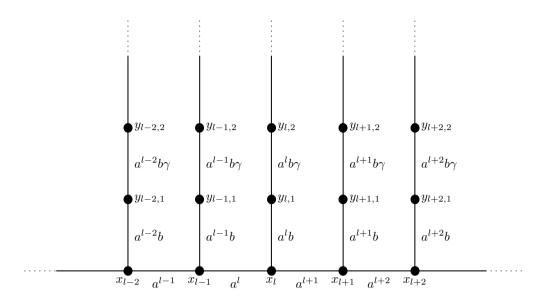


FIGURE 2. The tree of Lemma 18

Proof. First we observe that a, b, and c satisfy

$$(\alpha^{-1} - 1)^{p-1} - a^{1-p}(1 - \alpha)^{p-1} - b^{1-p}(1 - \gamma)^{p-1} = 0,$$

$$-(1 - \beta)^{p-1} + a^{1-p}(\beta^{-1} - 1)^{p-1} - b^{1-p}(1 - \gamma)^{p-1} = 0,$$

$$c^{p-1}(a^{1-p}(1 - \alpha)^{p-1} + (1 - \beta)^{p-1} + b^{1-p}(1 - \gamma)^{p-1}) = 1.$$

These imply that the *p*-Green function g_{x_m} satisfies

$$g_{x_m}(x_l) = ca^m \alpha^{l-m} \qquad \text{if } l \ge m,$$

$$g_{x_m}(x_l) = ca^m \beta^{m-l} \qquad \text{if } l < m,$$

$$g_{x_m}(y_{l,k}) = \gamma^k g_{x_m}(x_l).$$

Especially

$$g_{x_0}(x_l) = c\alpha^l, \qquad g_{x_l}(x_0) = ca^l \beta^l \qquad \text{if } l > 0, \\ g_{x_0}(x_l) = c\beta^{-l}, \qquad g_{x_l}(x_0) = ca^l \alpha^{-l} \qquad \text{if } l < 0.$$

Therefore, using (18), we have

(19)
$$H(x_0, x_l) = \left(\frac{\alpha}{a\beta}\right)^l = \left(\frac{(1-\alpha)^{p-1} + \alpha^{p-1}(1-\beta)^{p-1}}{(1-\beta)^{p-1} + \beta^{p-1}(1-\alpha)^{p-1}}\right)^{l(q-1)}.$$

Suppose that

(20)
$$\frac{(1-\alpha)^{p-1} + \alpha^{p-1}(1-\beta)^{p-1}}{(1-\beta)^{p-1} + \beta^{p-1}(1-\alpha)^{p-1}} = 1.$$

Then we have

$$\frac{(1-\alpha)^{p-1}}{1-\alpha^{p-1}} = \frac{(1-\beta)^{p-1}}{1-\beta^{p-1}}.$$

The function $(1-t)^{p-1}/(1-t^{p-1})$ is strictly increasing for 0 < t < 1 if 1 ;that is strictly decreasing if p > 2. Since $p \neq 2$ and $\alpha \neq \beta$, it follows that (20) never holds. Therefore the right hand side of (19) diverges when $l \to \infty$ or $l \to -\infty$.

Proof of Theorem 7 (iib). Let $\mathcal{T} = (V, E, r)$ be a tree which has infinitely many $x \in V$ such that $\deg(x) \geq 3$. If there is a subtree such that either

$$\deg(x_0) \ge 3, \deg(x_1) = 2, \dots, \deg(x_l) = 2, \deg(x_{l+1}) = 1$$

for some $l \geq 0$, or

$$\deg(x_0) \ge 3, \deg(x_1) = 2, \dots, \deg(x_l) = 2, \dots$$

then we may remove it from \mathcal{T} since we can make it a parabolic end.

Let $\{\{z_0^i, z_1^i, \ldots, z_{m_i-1}^i, z_{m_i}^i\}\}_i$ be all of paths such that

$$\deg(z_0^i) \ge 3, \deg(z_1^i) = 2, \dots, \deg(z_{m_i-1}^i) = 2, \deg(z_{m_i}^i) \ge 3$$

for some $m_i \ge 2$. Let $V' = V \setminus \{z_j^i\}_{i,j}$ and $E' = E \cup \{(z_0^i, z_{l_i}^i)\}_i \setminus \{(z_{j-1}^i, z_j^i)\}_{i,j}$. Then $\deg^{(V',E')}(x) \geq 3$ for all $x \in V'$. We choose $\{x_l\}_{l \in \mathbb{Z}} \subset V'$ be a two-sided infinite path, i.e., $\cdots \sim x_{-2} \sim x_{-1} \sim x_0 \sim x_1 \cdots$. Let $\mathcal{T}'' = (V'', E'', r'')$ be a tree such that

$$V = \{x_l, y_{l,k}\}_{l \in \mathbb{Z}, k \in \mathbb{N}},$$

$$E = \{(x_{l-1}, x_l), (x_l, y_{l,1}), (y_{l,k}, y_{l,k+1})\}_{l \in \mathbb{Z}, k \in \mathbb{N}},$$

$$r(x_{l-1}, x_l) = a^l, \qquad r(x_l, y_{l,1}) = a^l b, \qquad r(y_{l,k}, y_{l,k+1}) = a^l b \gamma^k,$$

where a, b and γ are as in Lemma 18. Then that lemma shows that

$$\sup_{l\in\mathbb{Z}}H^{\mathcal{T}''}(x_0,x_l)=\infty$$

Let $\mathcal{S}'_l = \mathcal{S}((V', E'), \{(x_{l-1}, x_l), (x_l, x_{l+1})\}, x_l)$. We choose a resistance r'_l on $E(\mathcal{S}'_{l})$ such that

$$g_{x_l}^{\mathcal{S}'_l}(x_l) = g_{x_l}^{\mathcal{S}''_l}(x_l)$$

where $\mathcal{S}_{l}'' = \mathcal{S}(\mathcal{T}'', \{(x_{l-1}, x_{l}), (x_{l}, x_{l+1})\}, x_{l})$. Then Lemma 17 shows that there exists a resistance r' on E' such that

$$H^{\mathcal{T}'}(x_0, x_l) = H^{\mathcal{T}''}(x_0, x_l),$$

and therefore

$$\sup_{l\in\mathbb{Z}}H^{\mathcal{T}'}(x_0,x_l)=\infty.$$

Next we choose a resistance r on E such that r = r' on $E \cap E'$ and

$$r'(z_0^i, z_{m_i}^i) = \sum_{j=1}^{m_i} r(z_{j-1}^i, z_j^i)$$
 for each *i*.

Then a similar argument to Proof of Theorem 7 (iia) implies

$$H^{\mathcal{T}}(x_0, x_l) = H^{\mathcal{T}'}(x_0, x_l),$$

and therefore

$$\sup_{l\in\mathbb{Z}}H^{\mathcal{T}}(x_0,x_l)=\infty.$$

This completes the proof.

References

- Takashi Kayano and Maretsugu Yamasaki, Boundary limit of discrete Dirichlet potentials, *Hiroshima Math. J.* 14 (1984), no. 2, 401–406.
- [2] Hisayasu Kurata, Linear relations for p-harmonic functions, Discrete Appl. Math. 156 (2008), no. 1, 103–109.
- [3] Hisayasu Kurata, Quasi-symmetricity for the nonlinear green function on a tree, *Interdiscip. Inform. Sci.* 14 (2008), no. 1, 103–116.
- [4] Tadashi Nakamura and Maretsugu Yamasaki, Generalized extremal length of an infinite network, *Hiroshima Math. J.* 6 (1976), no. 1, 95–111.
- [5] Paolo M. Soardi and Maretsugu Yamasaki, Classification of infinite networks and its application, *Circuits Systems Signal Process* 12 (1993), no. 1, 133–149.
- [6] Maretsugu Yamasaki, Parabolic and hyperbolic infinite networks, *Hiroshima Math. J.* 7 (1977), no. 1, 135–146.
- [7] Maretsugu Yamasaki, Ideal boundary limit of discrete Dirichlet functions, *Hiroshima Math. J.* 16 (1986), no. 2, 353–360.
- [8] Maretsugu Yamasaki, Nonlinear Poisson equations on an infinite network, Mem. Fac. Sci. Shimane Univ. 23 (1989), 1–9.

HISAYASU KURATA: YONAGO NATIONAL COLLEGE OF TECHNOLOGY, YONAGO, 683-8502 JAPAN

E-mail address: kurata@yonago-k.ac.jp