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Abstract. This article is based on the author’s thesis, “Dynamics of rational
functions and rational semigroups on the Riemann sphere”, and consists of two
topics. The first topic is about Blaschke products and rational functions with
Siegel disks. The second one is about Julia sets of quartic polynomials and
polynomial semigroups. Throughout this article, our interest is on topological
and geometrical properties of Julia sets.

1. Introduction

Let f be a rational function on the Riemann sphere. In the theory of complex
dynamics, there are two important sets called the Fatou set and the Julia set. The
Fatou set is the set of normality in the sense of Montel for the family {fn}∞n=1, where
fn = f ◦ · · · ◦ f is the n-th iteration of f . The Julia set is the complement of the
Fatou set. The dynamical behavior of f is stable on the Fatou set and “chaotic” on
the Julia set, and recent advances in computer graphics have enabled us to notice
that Julia sets have “fractal structure”. In general, Julia sets are complicated and
have abundant topological and geometrical properties. Moreover although Julia
sets of polynomials are compact subsets of the complex plane with empty interior,
there exists a quadratic polynomial such that its Julia set has positive Lebesgue
measure. Therefore Julia sets have enough fascinations to warrant further study.

This article consists of two topics. Section 2 deals with Blaschke products and
rational functions with Siegel disks. A Siegel disk of some polynomial with bounded
type rotation number has the quasicircle boundary containing its critical point. For
complex numbers λ and µ with λµ 6= 1 and a positive integer m, we consider two
rational functions

Eλ, µ, m(z) = z

(
zm + λ

µzm + 1

)
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and

Fλ, µ, m(z) = z

(
z + λ

µz + 1

)m

.

The two rational functions Eλ, µ, m and Fλ, µ, m are semiconjugate via Sm(z) = zm,
namely

Fλ, µ, m ◦ Sm = Sm ◦ Eλ, µ, m.

We show that the Siegel disk of Eλ, µ, m centered at the origin with bounded type
rotation number has the quasicircle boundary containing its critical point. This
property is inherited by Fλ, µ, m because of the semiconjugate relationship. In order
to show the above statement, we consider two Blaschke products

Am(z) = e2πiθz

(
zm − a

1− āzm

)(
zm − b

1− b̄zm

)

and

Bm(z) = e2πimθz

(
z − a

1− āz

)m(
z − b

1− b̄z

)m

,

which are semiconjugate via Sm, and employ the quasiconformal surgery.
Section 3 deals with quartic polynomials and polynomial semigroups. It is known

that if all finite critical points of a polynomial of degree greater than one belong
to the attracting basin of the point at infinity, then the Julia set is totally discon-
nected and the polynomial restricted to the Julia set is topologically conjugate to
the shift map on the symbol space. In the case that the Julia set of a polynomial of
degree greater than one is neither connected nor totally disconnected, simplifying
the dynamics of the polynomial on the Julia set into the dynamics of the shift map
becomes a problem. In the case that the Julia set of a quartic polynomial is under
the above assumption, we show that there exists a homeomorphism between the
set of all components of the filled-in Julia set with the Hausdorff metric and some
subset of the corresponding symbol space with the ordinary metric. Furthermore
the quartic polynomial is topologically conjugate to the shift map via the homeo-
morphism. The result associates the Julia set of the quartic polynomial with that
of a certain polynomial semigroup, namely there exists a homeomorphism between
the Julia set of the quartic polynomial and that of the polynomial semigroup.

2. Blaschke Products and Rational Functions with Siegel Disks

In this section we study geometrical properties of the boundary of Siegel disks.
A Siegel disk of some polynomial with bounded type rotation number has the
quasicircle boundary containing its critical point. In order to construct such a
Siegel disk not of a polynomial but of a rational function, we consider some Blaschke
product and employ the quasiconformal surgery.
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2.1. Siegel disks of bounded type.
Let f : Ĉ → Ĉ be a rational function of degree d ≥ 2 with a fixed point of
multiplier e2πiα at the origin, where α ∈ [0, 1] is irrational. Bryuno showed that if
α is a Bryuno number, then f is linearizable near the origin. Yoccoz showed that
if α is not a Bryuno number, then the quadratic polynomial Pα(z) = z2 + e2πiαz
is not linearizable near the origin, namely Pα is linearizable near the origin if and
only if α is a Bryuno number. Moreover the following theorem holds if α is of
bounded type.

Theorem 2.1 (Ghys-Douady-Herman-Shishikura-Świa̧tek). If α ∈ [0, 1] is irra-
tional of bounded type, then the boundary of the Siegel disk ∆ of Pα centered at the
origin is a quasicircle containing its critical point −e2πiα/2.

Moreover if α ∈ [0, 1] is irrational of bounded type, then the following statements
hold:

(a) (Petersen). The Julia set of Pα is locally connected and has measure zero.
(b) (McMullen). The Hausdorff dimension of the Julia set of Pα is less than two.
(c) (Graczyk-Jones). The Hausdorff dimension of ∂∆ is greater than one.

Conversely Petersen showed that if ∂∆ is a quasicircle containing the finite critical
point −e2πiα/2 of Pα, then α ∈ [0, 1] is of bounded type. Zakeri extended Theorem
2.1 to the case of cubic polynomials.

Theorem 2.2 (Zakeri, [44]). Let f be a cubic polynomial with a fixed point of
multiplier e2πiα at the origin. If an irrational number α ∈ [0, 1] is of bounded type,
then the boundary of the Siegel disk of f centered at the origin is a quasicircle
containing one or both critical points.

Geyer showed the following theorem which extended Theorem 2.1 to the case
of the polynomial Qα, m(z) = e2πiαz(1 + z/m)m. The quadratic polynomial Pα is
conformally conjugate to Qα, 1.

Theorem 2.3 (Geyer, [19]). Let m be a positive integer. If an irrational number
α ∈ [0, 1] is of bounded type, then the boundary of the Siegel disk of Qα, m centered
at the origin is a quasicircle containing its critical point −m/(m + 1).

Let Fλ, µ(z) = z(z+λ)/(µz+1) with λµ 6= 1. The origin and the point at infinity
are fixed points of Fλ, µ of multiplier λ and µ respectively. In the case that µ = 0,
Fλ, 0(z) = λz + z2. Therefore the quadratic rational function Fλ, µ is considered as
a perturbation of the quadratic polynomial z 7→ λz +z2. In the case that λ = e2πiα

and α is irrational of bounded type, the author showed the following theorem which
is a generalization of Theorem 2.1.

Theorem 2.4 ([24]). If an irrational number α ∈ [0, 1] is of bounded type, λ = e2πiα

and µ ∈ D with λµ 6= 1, then the boundary of the Siegel disk of Fλ, µ centered at
the origin is a quasicircle containing its critical point.

For complex numbers λ and µ with λµ 6= 1 and a positive integer m, we consider
two rational functions

Eλ, µ, m(z) = z

(
zm + λ

µzm + 1

)
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and

Fλ, µ, m(z) = z

(
z + λ

µz + 1

)m

.

The two rational functions Eλ, µ, m and Fλ, µ, m are semiconjugate via Sm(z) = zm,
namely

Fλ, µ, m ◦ Sm = Sm ◦ Eλ, µ, m.

It is clear that Eλ, µ, 1 = Fλ, µ, 1 = Fλ, µ. The origin is a fixed point of both Eλ, µ, m

and Fλ, µ, m of multiplier λ and λm respectively, and the point at infinity is a fixed
point of both Eλ, µ, m and Fλ, µ, m of multiplier µ and µm respectively. In the case
that µ = 0,

Fλ, 0, m(z) = z (z + λ)m .

Therefore the rational function Fλ, µ, m is considered as a perturbation of the polyno-
mial Fλ, 0, m. It is clear that Fλ, 0, m is conformally conjugate to Qα, m if λm = e2πiα.
In this section we show the following theorems which contain Theorem 2.4.

Theorem 2.5. Let m be a positive integer and let µ ∈ D. If an irrational number
α ∈ [0, 1] is of bounded type and e2πiαµ 6= 1, then the boundary of the Siegel disk
of Eλ, µ, m centered at the origin is a quasicircle containing its critical point, where
λ = e2πiα.

Theorem 2.6. Let m be a positive integer and let µ ∈ D. If an irrational number
α ∈ [0, 1] is of bounded type and e2πiαµm 6= 1, then the boundary of the Siegel disk
of Fλ, µ, m centered at the origin is a quasicircle containing its critical point, where
λ satisfies that λm = e2πiα.

Theorem 2.6
µ = 0, m = 1 Theorem 2.1

µ = 0 Theorem 2.3
m = 1 Theorem 2.4

Table 1. Special cases of Theorem 2.6

Theorem 2.6 contains Theorems 2.1, 2.3 and 2.4. Moreover we obtain the fol-
lowing two corollaries.

Corollary 2.7. Let m be a positive integer. If α and β in [0, 1] are irrational
of bounded type and e2πi(α+β) 6= 1, then the boundary of the Siegel disk of Eλ, µ, m

centered at the origin and that of the Siegel disk of Eλ, µ, m centered at the point at
infinity are quasicircles containing its critical point, where λ = e2πiα and µ = e2πiβ.

Corollary 2.8. Let m be a positive integer. If α and β in [0, 1] are irrational
of bounded type and e2πi(α+β) 6= 1, then the boundary of the Siegel disk of Fλ, µ, m

centered at the origin and that of the Siegel disk of Fλ, µ, m centered at the point
at infinity are quasicircles containing its critical point, where λ and µ satisfy that
λm = e2πiα and µm = e2πiβ.
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2.2. Blaschke product models.

Existence of Blaschke product models.
Let m be a positive integer. We consider the Blaschke product

B(z) = e2πimθz

(
z − a

1− āz

)m(
z − b

1− b̄z

)m

of degree 2m + 1 with ab̄ 6= 1 and 0 < |a| ≤ |b| < ∞. Let λ = abe2πiθ and let
µ = āb̄e−2πiθ. The derivative B′ of B is

B′(z) =
e2πimθ

(1− āz)2(1− b̄z)2

(
z − a

1− āz

)m−1(
z − b

1− b̄z

)m−1

g(z),

where

g(z) = āb̄z4 +
{
−(m + 1)(ā + b̄) + (m− 1)āb̄(a + b)

}
z3

+
{

2m + 1− (2m− 1)|ab|2 + |a + b|2
}

z2

+
{
−(m + 1)(a + b) + (m− 1)ab(ā + b̄)

}
z + ab.

Then multipliers of fixed points z = 0 and z = ∞ are λm and µm respectively. Let
c1, c2, c3 = 1/c̄2 and c4 = 1/c̄1 be the solutions of the equation g(z) = 0. Therefore
critical points of B are a, 1/ā, b, 1/b̄ c1, c2, c3 and c4, and multiplicities of critical
points a, 1/ā, b and 1/b̄ are m− 1. Since c1, c2, c3 and c4 are the solutions of the
equation g(z) = 0, we obtain that

g(z) = āb̄(z − c1)(z − c2)(z − c3)(z − c4)

= āb̄
{

z4 − C3z
3 + C2z

2 − C1z + C0

}
,

where

C0 =
c1c2

c̄1c̄2

, C1 =
c1

c̄1

(
c2 +

1

c̄2

)
+

c2

c̄2

(
c1 +

1

c̄1

)
,

C2 =
c1

c̄1

+
c2

c̄2

+

(
c1 +

1

c̄1

)(
c2 +

1

c̄2

)
, C3 = c1 +

1

c̄1

+ c2 +
1

c̄2

.
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Comparing coefficients of two representations of g(z) implies that

c1 +
1

c̄1

+ c2 +
1

c̄2

=
(m + 1)(ā + b̄)− (m− 1)(a + b)āb̄

āb̄
,(1)

c1

c̄1

+
c2

c̄2

+

(
c1 +

1

c̄1

)(
c2 +

1

c̄2

)
=

2m + 1− (2m− 1)|ab|2 + |a + b|2
āb̄

,(2)

c1

c̄1

(
c2 +

1

c̄2

)
+

c2

c̄2

(
c1 +

1

c̄1

)
=

(m + 1)(a + b)− (m− 1)(ā + b̄)ab

āb̄
,(3)

c1c2

c̄1c̄2

=
ab

āb̄
.(4)

Eliminating c1 and c̄1 from the equations (1), (2) and (4) gives that

(5) |a + b|2 − (m + 1)

(
c2 +

1

c̄2

)
(ā + b̄)−

(
c̄2

c2

)
ab

+

{(
c2 +

1

c̄2

)2

− c2

c̄2

}
āb̄ + (m− 1)

(
c2 +

1

c̄2

)
(a + b)āb̄

+ 2m + 1− (2m− 1)|ab|2 = 0,

and eliminating c1 and c̄1 from the equations (1), (3) and (4) gives that

(6)
c̄2

c2

(
c2 +

1

c̄2

)
ab + (m + 1)

(
c2

c̄2

)
(ā + b̄)− (m− 1)

(
c2

c̄2

)
(a + b)āb̄

=
c2

c̄2

(
c2 +

1

c̄2

)
āb̄ + (m + 1)(a + b)− (m− 1)(ā + b̄)ab.

We obtain that

(7) |a + b|2 − 2(m + 1)e2πiϕ(ā + b̄)− e2πi(−2ϕ)ab + 3e2πi·2ϕāb̄

+ 2(m− 1)e2πiϕ(a + b)āb̄ + 2m + 1− (2m− 1)|ab|2 = 0

and

(8) e2πi(−2ϕ)ab +
m + 1

2
e2πiϕ(ā + b̄)− m− 1

2
e2πiϕ(a + b)āb̄

= e2πi·2ϕāb̄ +
m + 1

2
e2πi(−ϕ)(a + b)− m− 1

2
e2πi(−ϕ)(ā + b̄)ab
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by substituting c2 = e2πiϕ into the equations (5) and (6). Eliminating ab from the
equations (7) and (8) gives that

(9) |a + b|2 − 3

2
(m + 1)e2πiϕ(ā + b̄)

− m + 1

2
e2πi(−ϕ)(a + b) + 2e2πi·2ϕāb̄ +

m− 1

2
e2πi(−ϕ)(ā + b̄)ab

+
3

2
(m− 1)e2πiϕ(a + b)āb̄ + 2m + 1− (2m− 1)|ab|2 = 0.

Let ζ = a + b and then

(10) |ζ|2 − 3

2
(m + 1)e2πiϕζ̄

− m + 1

2
e2πi(−ϕ)ζ + 2e2πi·2ϕāb̄ +

m− 1

2
e2πi(−ϕ)abζ̄

+
3

2
(m− 1)e2πiϕāb̄ζ + 2m + 1− (2m− 1)|ab|2 = 0.

The real part of the left side of the equation (10) is

(11) x2 + y2 − 2x
{

(m + 1) cos 2πϕ− (m− 1)r cos 2π(ϕ + θ + ω)
}

− 2y
{

(m + 1) sin 2πϕ + (m− 1)r sin 2π(ϕ + θ + ω)
}

+ 2r cos 2π(2ϕ + θ + ω) + 2m + 1− (2m− 1)r2 = 0,

and the imaginary part of the left side of the equation (10) is

(12) y
{

(m + 1) cos 2πϕ + (m− 1)r cos 2π(ϕ + θ + ω)
}

− x
{

(m + 1) sin 2πϕ− (m− 1)r sin 2π(ϕ + θ + ω)
}

+ 2r sin 2π(2ϕ + θ + ω) = 0,

where ζ = x + iy and µ = āb̄e−2πiθ = re2πiω. The solutions of simultaneous
equations (11) and (12) are

x =
{

(m + 1)2 + (m− 1)2r2 + 2(m2 − 1)r cos 2π(2ϕ + θ + ω)
}−1

×
{

C4 cos 2πϕ + C5 cos 2π(ϕ + θ + ω)

+C6 cos 2π(3ϕ + θ + ω) + C7 cos 2π(3ϕ + 2θ + 2ω)
}
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and

y =
{

(m + 1)2 + (m− 1)2r2 + 2(m2 − 1)r cos 2π(2ϕ + θ + ω)
}−1

×
{

C4 sin 2πϕ− C5 sin 2π(ϕ + θ + ω)

+C6 sin 2π(3ϕ + θ + ω)− C7 sin 2π(3ϕ + 2θ + 2ω)
}

,

where

C4 = (m + 1)2(2m + 1)− 2m(m2 − 1)r2,

C5 = 2m(m2 − 1)r − (m− 1)2(2m− 1)r3,

C6 = −(m + 1)2r,

C7 = −(m− 1)2r2.

Hence ζ = x + iy satisfies the equation (10). Conversely we show the following
theorem.

Theorem 2.9. Let µ = re2πiω ∈ D and let a = a(θ, ϕ) and b = b(θ, ϕ) with |a| ≤ |b|
be complex numbers satisfying relations a+ b = x+ iy and ab = re−2πi(θ+ω), namely
a and b are the solutions of the equation

(†) Z2 − (x + iy)Z + re−2πi(θ+ω) = 0,

where x and y are as above and (θ, ϕ) ∈ [0, 1]2. Then the following holds:

(a) If r = 0, then a = 0 and b = (2m + 1)e2πiϕ.
(b) If 0 < r < 1, then 0 < |a| < 1 < |b| < ∞.
(c) If r = 1 and 2ϕ + θ + ω ≡ 0 (mod 1), then a = b = e2πiϕ.
(d) If r = 1 and 2ϕ + θ + ω 6≡ 0 (mod 1), then 0 < |a| < 1 < |b| < ∞.
(e) In the case (a), (b) or (d),

B(z) = Bθ, ϕ, m(z) = e2πimθz

(
z − a

1− āz

)m(
z − b

1− b̄z

)m

is a Blaschke product of degree 2m + 1 and the point at infinity is a fixed
point of B with multiplier µm. Moreover z = e2πiϕ is a critical point of B
and B|T : T→ T is a homeomorphism, where T is the unit circle.

Proof. First, we show the following lemma.

Lemma 2.10. The inequality |x + iy| ≥ 2 holds. Moreover the equality holds if
and only if r = 1 and 2ϕ + θ + ω ≡ 0 (mod 1) hold.

Proof of Lemma 2.10. Since

cos 2π ·2(2ϕ + θ + ω) = 2 cos2 2π(2ϕ + θ + ω)− 1

and

cos 2π ·3(2ϕ + θ + ω) = 4 cos3 2π(2ϕ + θ + ω)− 3 cos 2π(2ϕ + θ + ω),
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we obtain that

|x + iy|2 =
{

(m + 1)2 + (m− 1)2r2 + 2(m2 − 1)r cos 2π(2ϕ + θ + ω)
}−2

×
∣∣∣C4e

2πiϕ + C5e
−2πi(ϕ+θ+ω) + C6e

2πi(3ϕ+θ+ω) + C7e
−2πi(3ϕ+2θ+2ω)

∣∣∣
2

=
{

(m + 1)2 + (m− 1)2r2 + 2(m2 − 1)r cos 2π(2ϕ + θ + ω)
}−2

×
{

C2
4 + C2

5 + C2
6 + C2

7 − 2C4C7 − 2C5C6

+ 2
(
C4C5 + C4C6 + C5C7 − 3C6C7

)
cos 2π(2ϕ + θ + ω)

+ 4
(
C4C7 + C5C6

)
cos2 2π(2ϕ + θ + ω) + 8C6C7 cos3 2π(2ϕ + θ + ω)

}
.

Therefore

|x + iy|2 =
{

(m + 1)2 + (m− 1)2r2 + 2(m2 − 1)r cos 2π(2ϕ + θ + ω)
}−2

×
[
4m6 + 20m5 + 41m4 + 44m3 + 26m2 + 8m + 1

+
(−4m6 − 12m5 − 5m4 + 12m3 + 14m2 + 8m + 3

)
r2

+
(−4m6 + 12m5 − 5m4 − 12m3 + 14m2 − 8m + 3

)
r4

+
(
4m6 − 20m5 + 41m4 − 44m3 + 26m2 − 8m + 1

)
r6

+
{(

8m6 + 16m5 − 10m4 − 48m3 − 44m2 − 16m− 2
)
r

+
(−16m6 + 44m4 − 24m2 − 4

)
r3

+
(
8m6 − 16m5 − 10m4 + 48m3 − 44m2 + 16m− 2

)
r5

}
cos 2π(2ϕ + θ + ω)

+
{(−16m5 − 20m4 + 16m3 + 24m2 − 4

)
r2

+
(
16m5 − 20m4 − 16m3 + 24m2 − 4

)
r4

}
cos2 2π(2ϕ + θ + ω)

+
(
8m4 − 16m2 + 8

)
r3 cos3 2π(2ϕ + θ + ω)

]
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=
{

(m + 1)2 + (m− 1)2r2 + 2(m2 − 1)r cos 2π(2ϕ + θ + ω)
}−2

×
[[

(m + 1)2 + (m− 1)2r2 + 2(m2 − 1)r cos 2π(2ϕ + θ + ω)
]

×
[
(m + 1)2(2m + 1)2 − 2(4m4 − 5m2 − 1)r2 + (m− 1)2(2m− 1)2r4

+
{
−4m(m + 1)(2m + 1)r + 4m(m− 1)(2m− 1)r3

}
cos 2π(2ϕ + θ + ω)

+ 4(m2 − 1)r2 cos2 2π(2ϕ + θ + ω)
]]

=
{

(m + 1)2 + (m− 1)2r2 + 2(m2 − 1)r cos 2π(2ϕ + θ + ω)
}−1

×
[
(m + 1)2(2m + 1)2 − 2(4m4 − 5m2 − 1)r2 + (m− 1)2(2m− 1)2r4

+ 4mr
{
−(m + 1)(2m + 1) + (m− 1)(2m− 1)r2

}
cos 2π(2ϕ + θ + ω)

+ 4(m2 − 1)r2 cos2 2π(2ϕ + θ + ω)

]
.

Let X = cos 2π(2ϕ + θ + ω) and we consider the function

f(X) =
{

(m + 1)2 + (m− 1)2r2 + 2(m2 − 1)rX
}−1

×
[
(m + 1)2(2m + 1)2 − 2(4m4 − 5m2 − 1)r2 + (m− 1)2(2m− 1)2r4

+ 4mr
{
−(m + 1)(2m + 1) + (m− 1)(2m− 1)r2

}
X + 4(m2 − 1)r2X2

]
.

Then the function f is monotone decreasing on [−1, 1] and

f(1) =
{

2m + 1− (2m− 1)r
}2

.

In the case that 0 ≤ r < 1, we obtain that

|x + iy| ≥
√

f(1) = 2m + 1− (2m− 1)r > 2.

In the case that r = 1 and 2ϕ + θ + ω 6≡ 0 (mod 1), we obtain that

|x + iy| >
√

f(1) = 2m + 1− (2m− 1) · 1 = 2.

Moreover in the case that r = 1 and 2ϕ + θ + ω ≡ 0 (mod 1), we obtain that

|x + iy| =
√

f(1) = 2m + 1− (2m− 1) · 1 = 2.

¤
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Proof of (a). It is clear.

Proof of (b). By Lemma 2.10, |a + b| = |x + iy| > 2. In the case that 0 < r < 1,
either 0 < |a| < 1 ≤ |b| < ∞ or 0 < |a| ≤ |b| ≤ 1 hold since |a||b| = r. If
0 < |a| ≤ |b| ≤ 1, then

2 < |a + b| ≤ |a|+ |b| ≤ 2.

This is a contradiction and hence the situation 0 < |a| < 1 ≤ |b| < ∞ happens. If
|b| = 1, then

2 < |a + b| ≤ |a|+ |b| = |a|+ 1 < 2.

This is a contradiction. Therefore the equation (†) does not have double roots and
0 < |a| < 1 < |b| < ∞.

Proof of (c). By assumptions, we obtain that x + iy = 2e2πiϕ and re−2πi(θ+ω) =
e2πi·2ϕ. Therefore the equation (†) is

Z2 − 2e2πiϕZ + e2πi·2ϕ = 0

and hence a = b = e2πiϕ.

Proof of (d). By Lemma 2.10, |a + b| = |x + iy| > 2. In the case that r = 1, either
0 < |a| < 1 < |b| < ∞ or |a| = |b| = 1 hold since |a||b| = 1. If |a| = |b| = 1, then

2 < |a + b| ≤ |a|+ |b| = 2.

This is a contradiction. Therefore the equation (†) does not have double roots and
0 < |a| < 1 < |b| < ∞.

Proof of (e). Let

u(z) =

(
z − a

1− āz

)(
z − b

1− b̄z

)
=

z2 − (a + b)z + ab

āb̄z2 − (ā + b̄)z + 1
.

The necessary and sufficient condition that the degree of the Blaschke product B
be 2m + 1 is that the function u be not constant, and then the necessary and
sufficient condition that the degree of the Blaschke product B be one is that the
function u be constant. In the case that r = 0, the function u is not constant since

u(z) =
z2 − (2m + 1)e2πiϕz

−(2m + 1)e−2πiϕz + 1
.

If r 6= 0, then

u(z) =
1

āb̄
· āb̄z2 − āb̄(a + b)z + |ab|2

āb̄z2 − (ā + b̄)z + 1
.

In the case that 0 < r < 1, the degree of the Blaschke product B is 2m + 1 since
|ab| = r < 1. In the case that r = 1, we obtain that

āb̄(a + b)− (
ā + b̄

)
=
−2me−2πi(3ϕ+θ+ω)

{
e2πi(2ϕ+θ+ω) − 1

}3

m2 + 1 + (m2 − 1) cos 2π(2ϕ + θ + ω)
.
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Therefore in the case that r = 1 and 2ϕ + θ + ω 6≡ 0 (mod 1), the degree of the
Blaschke product B is 2m + 1. On the other hand, if r = 1 and 2ϕ + θ + ω ≡ 0
(mod 1), then

u(z) =
1

āb̄
= e2πi·2ϕ

and the degree of the Blaschke product B is one. It is clear that the point at infinity
is a fixed point of B with multiplier µm. Moreover it is clear that g(e2πiϕ) = 0 and
hence z = e2πiϕ is a critical point of B, where

B′(z) =
e2πimθ

(1− āz)2(1− b̄z)2

(
z − a

1− āz

)m−1(
z − b

1− b̄z

)m−1

g(z)

and

g(z) = āb̄z4 +
{
−(m + 1)(ā + b̄) + (m− 1)āb̄(a + b)

}
z3

+
{

2m + 1− (2m− 1)|ab|2 + |a + b|2
}

z2

+
{
−(m + 1)(a + b) + (m− 1)ab(ā + b̄)

}
z + ab.

Finally we show that two critical points of B other than a, 1/ā, b, 1/b̄ (if m ≥ 2)

and e2πiϕ belong to Ĉ \ T. In the case that r = 0, we obtain that

g(z) = −(m + 1)(2m + 1)e−2πiϕz
(
z − e2πiϕ

)2
.

Therefore critical points of B are b, 1/b̄ (if m ≥ 2), 0, ∞ and e2πiϕ. In the case
that r 6= 0, let

h(z) = z2 +
e2πiϕ

C10

{
C9e

−2πi·2(2ϕ+θ+ω) + C8e
−2πi(2ϕ+θ+ω) + C9

}
z + e−2πi·2(ϕ+θ+ω),

where

C8 = −(m + 1)3(2m + 1) + 2(2m4 −m2 − 1)r2 − (m− 1)3(2m− 1)r4,

C9 = (m + 1)3r − (m− 1)3r3,

C10 = (m + 1)2r + (m− 1)2r3 + 2(m2 − 1)r cos 2π(2ϕ + θ + ω).

Then we can factor r−1e−2πi(θ+ω)g(z) as

1

r
· e−2πi(θ+ω) · g(z) =

(
z − e2πiϕ

)2 · h(z).

Let

h1(z) =
e2πiϕ

C10

{
C9e

−2πi·2(2ϕ+θ+ω) + C8e
−2πi(2ϕ+θ+ω) + C9

}
z

and
h2(z) = z2 + e−2πi·2(ϕ+θ+ω).

For any z in T, we obtain that |h2(z)| ≤ 2.

Lemma 2.11. The inequality |h1(z)| > 2 holds on T.
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Proof of Lemma 2.11. In the case that 0 < r < 1, we obtain that

|h1(z)| = 1

|C10|
∣∣C9e

−2πi·2(2ϕ+θ+ω) + C8e
−2πi(2ϕ+θ+ω) + C9

∣∣

≥ |C8| − 2|C9|
|C10| =

−C8 − 2C9

|C10| ≥ v(m, r)

on T, where

v(m, r) =
{

(3m− 1)(m + 1)r + (m− 1)2r3
}−1

×
{

(m + 1)3(2m + 1)− 2(m + 1)3r − 2(2m4 −m2 − 1)r2

+ 2(m− 1)3r3 + (m− 1)3(2m− 1)r4
}

.

Since the function r 7→ v(m, r) is monotone decreasing on (0, 1] and v(m, 1) = 2,
we obtain that |h1(z)| > 2 on T. In the case that r = 1 and 2ϕ + θ + ω 6≡ 0
(mod 1), we obtain that

|h1(z)| = |C9|
|C10|

∣∣∣∣e−2πi·2(2ϕ+θ+ω) +
C8

C9

e−2πi(2ϕ+θ+ω) + 1

∣∣∣∣

=
C9

|C10|

∣∣∣∣
{
e−2πi(2ϕ+θ+ω) + 1

}2
+

(
C8

C9

− 2

)
e−2πi(2ϕ+θ+ω)

∣∣∣∣

≥ C9

|C10|

∣∣∣∣∣
∣∣e−2πi(2ϕ+θ+ω) + 1

∣∣2 −
∣∣∣∣
C8

C9

− 2

∣∣∣∣
∣∣∣∣∣

=
C9

|C10|

∣∣∣∣∣
∣∣e−2πi(2ϕ+θ+ω) + 1

∣∣2 − 4(4m2 + 1)

3m2 + 1

∣∣∣∣∣

≥ 3m2 + 1

2m2

{
4(4m2 + 1)

3m2 + 1
−

∣∣e−2πi(2ϕ+θ+ω) + 1
∣∣2

}

>
3m2 + 1

2m2

{
4(4m2 + 1)

3m2 + 1
− 4

}

= 2

on T. ¤

By the Rouché’s theorem, the number of roots of h(z) = h1(z) + h2(z) on D is
one since |h1(z)| > 2 ≥ |h2(z)| on T and the number of roots of h1(z) on D is
one. Hence one of critical points of B other than a, 1/ā, b, 1/b̄ (if m ≥ 2) and
e2πiϕ belongs to D. Since critical points of a Blaschke product are symmetric with
respect to the unit circle, the other one critical point of B belongs to Ĉ \ D. In
this case, the inverse image B−1(T) of T is the union of T and a figure eight 8
which crosses at z = e2πiϕ. See Figure 1. Then B|8 : 8 → T is a 2m-to-1 map and
therefore B|T : T→ T is a homeomorphism. ¤



30 K. KATAGATA

e2πiϕ

b

1/b̄

0
m : 1

(m + 1) : 1

Bθ,ϕ,m
a

m : 1

Figure 1. The inverse image B−1
θ, ϕ, m(T) of the unit circle T.

Remark 2.12. Two complex numbers a = a(θ, ϕ) and b = b(θ, ϕ) satisfy that

a(θ + 1, ϕ) = a(θ, ϕ) = a(θ, ϕ + 1)

and

b(θ + 1, ϕ) = b(θ, ϕ) = b(θ, ϕ + 1).

Rotation numbers of Blaschke products.
Let f : T→ T be an orientation-preserving homeomorphism and let f̃ : R→ R be
a lift of f via x 7→ e2πix which satisfies that f̃(x + 1) = f̃(x) + 1 for all x ∈ R. The

lift f̃ of f is unique up to addition of an integer constant. The rotation number
ρ(f̃) of f̃ is defined as

ρ(f̃) = lim
n→∞

f̃n(x)

n
,

which is independent of x ∈ R. The rotation number ρ(f) is defined as the residue

class of ρ(f̃) modulo Z. Poincaré showed that the rotation number is rational with
denominator q if and only if f has a periodic point with period q. The following
theorem is important (see [28]).

Theorem 2.13. Let F be the set of all orientation-preserving homeomorphisms
from the unit circle onto itself with the topology of uniform convergence. Then the
rotation number function ρ : F → R/Z defined as f 7→ ρ(f) is continuous.

Let a(θ, ϕ) and b(θ, ϕ) be as in Theorem 2.9. We define a map Γm : [0, 1]3 → T
as

Γm(x, θ, ϕ) =

(
e2πix − a(θ, ϕ)

1− a(θ, ϕ) e2πix

)m (
e2πix − b(θ, ϕ)

1− b(θ, ϕ) e2πix

)m

and a map Hm : [0, 1]4 → T as

Hm(x, θ, ϕ, t) =

(
e2πix − a(θ, ϕ, t)

1− a(θ, ϕ, t) e2πix

)m (
e2πix − b(θ, ϕ, t)

1− b(θ, ϕ, t) e2πix

)m

,
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where

a(θ, ϕ, t) = (1− t)a(θ, ϕ) + te2πiϕ

and

b(θ, ϕ, t) = (1− t)b(θ, ϕ) + te2πiϕ.

In the case that r = 1 and 2ϕ + θ + ω ≡ 0 (mod 1), we obtain that Γm(x, θ, ϕ) =
e2πi·2mϕ. The following three lemmas play important roles in the proof of Theorem
2.17.

Lemma 2.14. A map Hm( · , θ, ϕ, · ) : [0, 1]2 → T is a homotopy between a loop
x 7→ Γm(x, θ, ϕ) and a constant loop x 7→ e2πi·2mϕ for any (θ, ϕ) ∈ [0, 1]2.

Proof. It is clear since Hm( · , θ, ϕ, 0) = Γm( · , θ, ϕ) and Hm( · , θ, ϕ, 1) = e2πi·2mϕ.
¤

Lemma 2.15. A map Hm(x, · , ϕ, · ) : [0, 1]2 → T is a homotopy between a loop
θ 7→ Γm(x, θ, ϕ) and a constant loop θ 7→ e2πi·2mϕ for any (x, ϕ) ∈ [0, 1]2.

Proof. It is clear since Hm(x, · , ϕ, 0) = Γm(x, · , ϕ) and Hm(x, · , ϕ, 1) = e2πi·2mϕ.
¤

Lemma 2.16. A map Hm(x, θ, · , · ) : [0, 1]2 → T is a homotopy between a loop
ϕ 7→ Γm(x, θ, ϕ) and a loop ϕ 7→ e2πi·2mϕ for any (x, θ) ∈ [0, 1]2.

Proof. It is clear since Hm(x, θ, · , 0) = Γm(x, θ, · ) and Hm(x, θ, · , 1) = e2πi·2mϕ.
¤

Lemma 2.14 and Lemma 2.15 imply that

arg (Γm(x + 1, θ, ϕ)) = arg (Γm(x, θ, ϕ)) = arg (Γm(x, θ + 1, ϕ)),

and Lemma 2.16 implies that

1

2π
arg (Γm(x, θ, ϕ + 1)) =

1

2π
arg (Γm(x, θ, ϕ)) + 2m.

Theorem 2.17. Let α ∈ [0, 1] and let µ = re2πiω ∈ D. Besides let a = a(θ, ϕ) and
b = b(θ, ϕ) be as in Theorem 2.9. Then for the Blaschke product

Bθ, ϕ, m(z) = e2πimθz

(
z − a

1− āz

)m(
z − b

1− b̄z

)m

,

Bθ, ϕ, m|T : T→ T is an orientation-preserving homeomorphism. Moreover

(a) If 0 ≤ r < 1, then there exists (θ0, ϕ0) ∈ [0, 1]2 such that ρ(Bθ0, ϕ0, m|T) = α.
(b) If r = 1 and α + mω 6≡ 0 (mod 1), then there exists (θ0, ϕ0) ∈ [0, 1]2 such

that ρ(Bθ0, ϕ0, m|T) = α and 2ϕ0 + θ0 + ω 6≡ 0 (mod 1).

Proof. In the case that r = 1 and 2ϕ + θ + ω ≡ 0 (mod 1),

Bθ, ϕ, m(z) = e2πim(2ϕ+θ)z = e2πi(−mω)z.



32 K. KATAGATA

Therefore Bθ, ϕ, m|T : T → T is an orientation-preserving homeomorphism and its
rotation number satisfies that ρ(Bθ, ϕ, m|T) ≡ −mω (mod 1). In the other cases, we
consider a lift

B̃θ, ϕ, m(x) = mθ + x +
1

2π
arg (Γm(x, θ, ϕ))

of Bθ, ϕ, m|T : T→ T via x 7→ e2πix. By Lemma 2.14,

B̃θ, ϕ, m(x + 1) = mθ + x + 1 +
1

2π
arg (Γm(x + 1, θ, ϕ)) = B̃θ, ϕ, m(x) + 1

for all x ∈ R. This implies that Bθ, ϕ, m|T : T → T is an orientation-preserving

homeomorphism. Consequently the rotation number of ρ(B̃θ, ϕ, m) is well defined.

By Lemma 2.15, we obtain that B̃ n
1, ϕ, m(x) = B̃ n

0, ϕ, m(x) + mn and hence

(13) ρ(B̃1, ϕ, m) = ρ(B̃0, ϕ, m) + m.

Moreover by Lemma 2.16, we obtain that B̃ n
θ, 1, m(x) = B̃ n

θ, 0, m(x) + 2mn and hence

(14) ρ(B̃θ, 1, m) = ρ(B̃θ, 0, m) + 2m.

These two equations (13) and (14) imply that

ρ(B̃1, 1, m) = ρ(B̃0, 0, m) + 3m.

Therefore in the case that 0 ≤ r < 1, there exists (θ0, ϕ0) ∈ [0, 1]2 such that

α = ρ(Bθ0, ϕ0, m|T) ≡ ρ(B̃θ0, ϕ0, m) (mod 1)

since the rotation number function (θ, ϕ) 7→ ρ(Bθ, ϕ, m|T) is continuous. In the case
that r = 1, if 2ϕ + θ + ω ≡ 0 (mod 1), then ρ(Bθ, ϕ, m|T) ≡ −mω (mod 1). Hence
if α + mω 6≡ 0 (mod 1), then there exists (θ0, ϕ0) ∈ [0, 1]2 such that

α = ρ(Bθ0, ϕ0, m|T) ≡ ρ(B̃θ0, ϕ0, m) (mod 1)

and 2ϕ0 + θ0 + ω 6≡ 0 (mod 1). ¤
Remark 2.18. By theorem 2.9, the degree of Bθ0,ϕ0,m is 2m + 1.

Let m be a positive integer. We consider another Blaschke product

A(z) = e2πiθz

(
zm − a

1− āzm

)(
zm − b

1− b̄zm

)

of degree 2m + 1 with ab̄ 6= 1 and 0 ≤ |a| ≤ |b| < ∞. Let λ = abe2πiθ and let
µ = āb̄e−2πiθ. Then multipliers of fixed points z = 0 and z = ∞ are λ and µ
respectively. Blaschke products

A(z) = e2πiθz

(
zm − a

1− āzm

)(
zm − b

1− b̄zm

)

and

B(z) = e2πimθz

(
z − a

1− āz

)m(
z − b

1− b̄z

)m
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are semiconjugate via Sm(z) = zm, namely

B ◦ Sm = Sm ◦ A.

Therefore if B|T : T → T is an orientation-preserving homeomorphism, then so is
A|T : T→ T. The following is a corollary of Theorem 2.17.

Corollary 2.19. Let α ∈ [0, 1] and let µ = re2πiω ∈ D. Besides let a = a(θ, ϕ) and
b = b(θ, ϕ) be as in Theorem 2.9. Then for the Blaschke product

Aθ, ϕ, m(z) = e2πiθz

(
zm − a

1− āzm

)(
zm − b

1− b̄zm

)
,

Aθ, ϕ, m|T : T→ T is an orientation-preserving homeomorphism. Moreover

(a) If 0 ≤ r < 1, then there exists (θ0, ϕ0) ∈ [0, 1]2 such that ρ(Aθ0, ϕ0, m|T) = α.
(b) If r = 1 and α + ω 6≡ 0 (mod 1), then there exists (θ0, ϕ0) ∈ [0, 1]2 such that

ρ(Aθ0, ϕ0, m|T) = α and 2ϕ0 + θ0 + ω 6≡ 0 (mod 1).

Proof. By Theorem 2.17, Bθ, ϕ, m|T : T→ T is an orientation-preserving homeomor-
phism. Therefore so is Aθ, ϕ, m|T : T→ T. We consider a lift

Ãθ, ϕ, m(x) = θ + x +
1

2π
arg

{(
e2πimx − a

1− ā e2πimx

)(
e2πimx − b

1− b̄ e2πimx

)}

of Aθ, ϕ, m|T : T→ T via x 7→ e2πix. It is clear that m Ãθ, ϕ, m(x) = B̃θ, ϕ, m(mx) and
therefore

m Ãn
θ, ϕ, m(x) = B̃ n

θ, ϕ, m(mx).

Since Aθ, ϕ, m|T and Bθ, ϕ, m|T are orientation-preserving homeomorphisms, we obtain
that

mρ(Ãθ, ϕ, m) = ρ(B̃θ, ϕ, m)

and

mρ(Aθ, ϕ, m|T) = ρ(Bθ, ϕ, m|T).
We consider the case that 0 ≤ r < 1. By Theorem 2.17, for β = mα there exists
(θ0, ϕ0) ∈ [0, 1]2 such that

ρ(Bθ0, ϕ0, m|T) = β.

Therefore this implies that

ρ(Aθ0, ϕ0, m|T) = α.

Next we consider the case that r = 1. It is clear that if α + ω 6≡ 0 (mod 1), then
β + mω 6≡ 0 (mod 1). By Theorem 2.17, there exists (θ0, ϕ0) ∈ [0, 1]2 such that

ρ(Bθ0, ϕ0, m|T) = β

and 2ϕ0 + θ0 + ω 6≡ 0 (mod 1). Hence we obtain that

ρ(Aθ0, ϕ0, m|T) = α.

¤
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2.3. Quasiconformal surgery.
In this subsection we prove Theorems 2.5 and 2.6 and Corollaries 2.7 and 2.8. Let
f : R→ R be a homeomorphism. If there exists k ≥ 1 such that

1

k
≤

∣∣∣∣
f(x + t)− f(x)

f(x)− f(x− t)

∣∣∣∣ ≤ k

for all x ∈ R and all t ≥ 0, then f is called k-quasisymmetric. A homeomorphism
h : T→ T is k-quasisymmetric if its lift h̃ : R→ R is k-quasisymmetric.

Theorem 2.20 (Beurling-Ahlfors). Any k-quasisymmetric homeomorphism f :
R → R is extended to a K-quasiconformal map F : H → H. The dilatation K of
F depends only on k.

Hence if a homeomorphism h : T→ T is k-quasisymmetric, then we can extend
h to a K-quasiconformal map H : D→ D whose dilatation depends only on k. The
following theorem gives an equivalent condition for the rotation number and the
linearizability of an orientation-preserving homeomorphism on the unit circle.

Theorem 2.21 (Herman-Świa̧tek). The rotation number ρ(f) of a real analytic
orientation-preserving homeomorphism f : T→ T is of bounded type if and only if
f is quasisymmetrically linearizable, namely there exits a quasisymmetric homeo-
morphism h : T→ T such that h ◦ f ◦ h−1(z) = e2πiρ(f)z.

We recall that

Eλ, µ, m(z) = z

(
zm + λ

µzm + 1

)
, Fλ, µ, m(z) = z

(
z + λ

µz + 1

)m

,

Aθ, ϕ, m(z) = e2πiθz

(
zm − a

1− āzm

)(
zm − b

1− b̄zm

)
,

Bθ, ϕ, m(z) = e2πimθz

(
z − a

1− āz

)m(
z − b

1− b̄z

)m

,

where a = a(θ, ϕ) and b = b(θ, ϕ) are the solutions of the equation (†). In this
case, z = e2πiϕ is a critical point of Bθ, ϕ, m and z = e2πi(ϕ+j)/m is a critical point of
Aθ, ϕ, m for j = 0, 1, . . . , m− 1.

Proof of Theorem 2.5. By Corollary 2.19, there exist (θ, ϕ) ∈ [0, 1]2 such that the
degree of Aθ, ϕ, m is 2m + 1 and ρ(Aθ, ϕ, m|T) = α. By Theorem 2.21, there exists
a quasisymmetric homeomorphism h : T → T such that h ◦ Aθ, ϕ, m|T ◦ h−1 = Rα

since α is of bounded type, where Rα(z) = e2πiαz. By the theorem of Beurling and
Ahlfors, the quasisymmetric homeomorphism h has a quasiconformal extension
H : D→ D with H(0) = 0. We define a new map Aθ, ϕ, m as

Aθ, ϕ, m =

{
Aθ, ϕ, m on Ĉ \ D,

H−1 ◦Rα ◦H on D.
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The map Aθ, ϕ, m is quasiregular on Ĉ since T is an analytic curve. Moreover Aθ, ϕ, m

is a degree m + 1 branched covering of Ĉ. We define a conformal structure σθ, ϕ, m

as

σθ, ϕ, m =





H∗(σ0) on D,(
An

θ, ϕ, m

)∗ ◦H∗(σ0) on A−n
θ, ϕ, m (D) \ D for all n ∈ N,

σ0 on Ĉ \⋃∞
n=1 A−n

θ, ϕ, m (D) ,

where σ0 is the standard conformal structure on Ĉ. The conformal structure σθ, ϕ, m

is invariant under Aθ, ϕ, m and its maximal dilatation is the dilatation of H since H is
quasiconformal and Aθ, ϕ, m is holomorphic. By the measurable Riemann mapping

theorem, there exists a quasiconformal map Φ : Ĉ → Ĉ such that Φ∗σ0 = σθ, ϕ, m.
Therefore Φ ◦ Aθ, ϕ, m ◦ Φ−1 is a rational function of degree m + 1. We normalize
Φ by Φ(0) = 0, Φ(∞) = ∞ and Φ(b1) is a point with Φ(b1)

m = −λ, where b1 is
an m-th root of b and λ = e2πiα. Then other m-th roots b2, . . . , bm of b also satisfy
that Φ(bj)

m = −λ.

Lemma 2.22. For the quasiconformal map Φ normalized as above,

Eλ, µ, m = Φ ◦ Aθ, ϕ, m ◦ Φ−1.

Proof of Lemma 2.22. First we consider the case that µ 6= 0. Since orders of zeros
and poles are invariant under conjugation, we obtain that

Φ ◦ Aθ, ϕ, m ◦ Φ−1(z) = ν z

(
zm + λ

zm + ξ

)

for some ν and ξ with ν ξ 6= 0. Since multipliers of fixed points are also invariant
under conjugation, we obtain that

(15) λ =
(
Φ ◦ Aθ, ϕ, m ◦ Φ−1

)′
(0) = ν

λ

ξ

and

(16) µ =
1

(Φ ◦ Aθ, ϕ, m ◦ Φ−1)′ (∞)
=

1

ν
.

By the equations (15) and (16), we obtain that ν = ξ = 1/µ. Therefore

Φ ◦ Aθ, ϕ, m ◦ Φ−1(z) =
z

µ

(
zm + λ

zm + 1/µ

)
= z

(
zm + λ

µzm + 1

)
= Eλ, µ, m(z).

In the case that µ = 0, we obtain that

Φ ◦ Aθ, ϕ, m ◦ Φ−1(z) = ν z (zm + λ)

for some ν 6= 0. Since

λ =
(
Φ ◦ Aθ, ϕ, m ◦ Φ−1

)′
(0) = νλ,

ν = 1 and Φ ◦ Aθ, ϕ, m ◦ Φ−1 = Eλ, µ, m. ¤
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r = 0 r = 0.5

r = 0.9 r = 1

Figure 2. Golden Siegel disks of the rational function Fλ, µ, 1 cen-

tered at the origin, where λ = e2πi·(√5−1)/2 and µ = re2πi·(√5−1)/2. In
the case that r = 1, the point at infinity is the center of another
golden Siegel disk.

The rational function Eλ, µ, m has a Siegel disk ∆ = Φ(D) with a critical point
Φ(e2πi(ϕ+j)/m) ∈ ∂∆. Moreover ∂∆ = Φ(T) is a quasicircle since Φ is quasiconfor-
mal. We have completed the proof of Theorem 2.5. ¤
Remark 2.23. The boundary of the Siegel disk of Eλ, µ, m centered at the origin
contains m critical points

Φ(e2πiϕ/m), Φ(e2πi(ϕ+1)/m), . . . , Φ(e2πi(ϕ+m−1)/m).

Proof of Theorem 2.6. Let λ be a complex number satisfying λm = e2πiα. By the
assumption e2πiαµm 6= 1, we obtain that λµ 6= 1. By Theorem 2.5, the boundary
of the Siegel disk ∆ of Eλ, µ, m centered at the origin is a quasicircle containing
its critical point Φ(e2πi(ϕ+j)/m). Since two rational functions Eλ, µ, m and Fλ, µ, m
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are semiconjugate via Sm(z) = zm, Sm(∆) is the Siegel disk of Fλ, µ, m centered at
the origin and the boundary ∂Sm(∆) is a quasicircle containing its critical point
Sm(Φ(e2πi(ϕ+j)/m)). ¤
Remark 2.24. The boundary of the Siegel disk of Fλ, µ, m centered at the origin
contains only one critical point, since

Sm(Φ(e2πi(ϕ+j)/m)) = Sm(Φ(e2πi(ϕ+k)/m))

for any j and k in {0, 1, . . . , m− 1}.
Proof of Corollary 2.7. Let I(z) = 1/z. Then Eλ, µ, m = I ◦ Eµ, λ, m ◦ I. Let ∆
and ∆∞ be Siegel disks of Eλ, µ, m centered at the origin and the point at infinity
respectively. By Theorem 2.5, the boundary of ∆ contains a critical point of Eλ, µ, m.
On the other hand, I(∆∞) is the Siegel disk of Eµ, λ, m centered at the origin. By
Theorem 2.5, the boundary of I(∆∞) contains a critical point of Eµ, λ, m. Therefore
the boundary of ∆∞ contains a critical point of Eλ, µ, m. ¤

The proof of Corollary 2.8 is similar to that of Corollary 2.7.

3. Julia Sets of Quartic Polynomials and Polynomial Semigroups

For a polynomial of degree greater than one, the Julia set and the filled-in Julia
set are either connected or else have uncountably many components. In the case
that the Julia set of a quartic polynomial is neither connected nor totally discon-
nected, there exists a homeomorphism between the set of all components of the
filled-in Julia set with the Hausdorff metric and some subset of the corresponding
symbol space with the ordinary metric. Furthermore the quartic polynomial is
topologically conjugate to the shift map via the homeomorphism. Moreover there
exists a homeomorphism between the Julia set of the quartic polynomial and that
of a certain polynomial semigroup.

3.1. Homeomorphy.

Definition 3.1. The symbol space on q symbols is the countable product Σq =
{1, 2, . . . , q}ω. For s = (sn) and t = (tn) in Σq, the metric ρ on Σq is defined as

ρ(s, t) =
∞∑

n=0

δ(sn, tn)

2n
, where δ(k, l) =

{
1 if k 6= l,

0 if k = l.

Then (Σq, ρ) is a compact metric space. The shift map σ : Σq → Σq is defined as

σ((s0, s1, s2, . . .)) = (s1, s2, . . .).

The shift map σ is continuous with respect to the metric ρ.

The connectivity of the Julia set of a polynomial is affected by the behavior of
finite critical points. Dynamics on the Julia set is simple if its all finite critical
points belong to the attracting basin of the point at infinity.

Theorem 3.2. Let f be a polynomial of degree d ≥ 2.
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• If all finite critical points of f belong to the attracting basin A(∞), then the
Julia set J(f) is totally disconnected and correspond with the filled-in Julia
set K(f). Furthermore f : J(f) → J(f) is topologically conjugate to the
shift map σ : Σd → Σd.

• Both J(f) and K(f) are connected if and only if all finite critical points of
f belong to K(f).

Definition 3.3. The triple (f, U, V ) is a polynomial-like map of degree d if U and
V are bounded simply connected domains such that U ⊂ V and f : U → V is a
holomorphic proper map of degree d. The filled-in Julia set K(f) of a polynomial-
like map (f, U, V ) is defined as

K(f) = {z ∈ U : {fn(z)}∞n=1 ⊂ U} .

Definition 3.4. For a compact subset A in C and a positive number δ, let A[δ]
be the δ-neighborhood of A. For compact subsets A and B in C, we define the
Hausdorff metric dH as

dH(A,B) = inf {δ : A ⊂ B[δ] and B ⊂ A[δ]} .

Situation. Let f be a quartic polynomial and let c1, c2 and c3 be finite critical
points of f . Besides let G be the Green’s function associated with the filled-in Julia
set K(f). We assume that G(c1) = G(c2) = 0 and G(c3) > 0, namely c1 and c2

belong to K(f) and c3 belongs to A(∞).
Let U be the bounded component of C \ G−1(G(f(c3))). We assume that UA

and UB are the different bounded components of C \G−1(G(c3)) such that c1 ∈ UA

and c2 ∈ UB. Then UA and UB are proper subsets of U . Furthermore (f |UA
, UA, U)

and (f |UB
, UB, U) are polynomial-like maps of degree two. We set f1 = f |UA

and
f2 = f |UB

.

c3

UA UB

C \ G−1(G(f (c3)))

C \ G−1(G(c3))

c1 c2

U

f (c3)

f1
f2

Figure 3. Polynomial-like maps (f1, UA, U) and (f2, UB, U).

Under this situation, we define the A-B kneading sequence (αn)n≥0 of ci as

αn =

{
A if fn(ci) ∈ UA,

B if fn(ci) ∈ UB.
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We assume that the A-B kneading sequence of c1 is (AAA · · · ) and the A-B knead-
ing sequence of c2 is (BBB · · · ). This implies that K(f1) and K(f2) are connected.

Let K(f)∗ be the set of all components of K(f). Since G(c3) > 0, the Julia set
J(f) and the filled-in Julia set K(f) are disconnected and have uncountably many
components respectively. Therefore K(f)∗ is an uncountable set and becomes a
metric space with the Hausdorff metric dH . We define a map F : K(f)∗ → K(f)∗

as F (K) = f(K) for K ∈ K(f)∗. This map F is continuous with respect to the
Hausdorff metric dH .

Let Σ6 = {1, 2, 3, 4, A, B}ω be the symbol space which we treat mainly in this
section. We define a subset Σ of Σ6 as follows: A point s = (sn) belongs to Σ if
and only if

(1) If sn = A, then sn+1 = A.
(2) If sn = B, then sn+1 = B.
(3) If sn = A and sn−1 6= A, then sn−1 = 3 or 4.
(4) If sn = B and sn−1 6= B, then sn−1 = 1 or 2.
(5) If s ∈ Σ4 = {1, 2, 3, 4}ω, then there exist subsequences (sn(k))

∞
k=1 and

(s′n(l))
∞
l=1 such that sn(k) = 1 or 2 for all k ≥ 1 and s′n(l) = 3 or 4 for all

l ≥ 1.

It is the first goal of this section to prove the following theorem.

Theorem 3.5. Let f be a quartic polynomial. We assume that its finite critical
points c1, c2 ∈ K(f) and c3 ∈ A(∞) are all different and assume that J(f) is dis-
connected but not totally disconnected. Moreover we assume that the A-B kneading
sequence of c1 is (AAA · · · ) and the A-B kneading sequence of c2 is (BBB · · · ).
Then there exists a homeomorphism Λ : K(f)∗ → Σ such that Λ ◦ F = σ ◦ Λ.

Remark 3.6. The property (5) of Σ is essential. For instance, a sequence

s(n) = (1, 1, . . . , 1︸ ︷︷ ︸

n-times

, B, B, B, . . . )





∞

n=1

in Σ converges to s = (1, 1, 1, . . . ) but s is not in Σ. Each s(n) corresponds to
a component of backward iterated images of the filled-in Julia set K(f2). These
backward components converge to a repelling fixed point in ∂K(f1). Therefore
we can consider that the point s = (1, 1, 1, . . . ) corresponds to the repelling fixed
point. However the fixed point is not a component of K(f). Similarly a sequence
like (1, 2, 1, 2, . . . ) corresponds to a periodic point of period two in ∂K(f1).

In the case of other critical configurations, we obtain similar results to Theorem
3.5 (see the subsection 3.3).

Theorem 3.7. Let f be a quartic polynomial. We assume that its finite critical
points c1, c2 and c3 satisfy that G(c1) = 0, G(c3) ≥ G(c2) > 0 and fn(c2) 6= c3

for all n ≥ 0 and assume that J(f) is disconnected but not totally disconnected.
Moreover we assume that the kneading sequence of c1 is (CCC · · · ). Then there
exist a subset Σ of Σ5 = {1, 2, 3, 4, C}ω and a homeomorphism Λ : K(f)∗ → Σ
such that Λ ◦ F = σ ◦ Λ.
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Figure 4. The filled-in Julia set of f(z) = z4+cz3−(3c/2+2)z2+2,
where c = 0.594618 − 0.017361i. Its finite critical points are
−1.445963 + 0.013021i and 1 in K(f) and 0 in A(∞).

Theorem 3.8. Let f be a quartic polynomial. We assume that its finite critical
points c1, c2 and c3 satisfy that c1 = c2, c1 ∈ K(f) and c3 ∈ A(∞) and assume
that J(f) is disconnected but not totally disconnected. Moreover we assume that
the kneading sequence of c1 is (BBB · · · ). Then there exist a subset Σ of Σ5 =
{1, 2, 3, 4, B}ω and a homeomorphism Λ : K(f)∗ → Σ such that Λ ◦ F = σ ◦ Λ.

Figure 4 is an example of the situation described in Theorem 3.5. The biggest
component of the left-hand side in Figure 4 is like the filled-in Julia set of some
polynomial of degree two, and the biggest component of the right-hand side is also
like the filled-in Julia set of some polynomial of degree two. In fact, these are the
filled-in Julia sets of polynomial-like maps of degree two. Therefore we can consider
that the quartic polynomial in this example is constructed from two polynomials
of degree two. In general, we can consider that a quartic polynomial which satis-
fies the assumption of Theorem 3.5 is constricted from two polynomials of degree
two. Under this consideration, we conjecture that the Julia set of the quartic poly-
nomial is homeomorphic to that of some polynomial semigroup generated by two
polynomials of degree two. This conjecture is actually correct.

Theorem 3.9. Under the assumption of Theorem 3.5, there exist polynomials g1

and g2 of degree two and a homeomorphism h on K(f) such that

h(J(f)) = J(G),

where G = 〈g1, g2〉 is a polynomial semigroup.

Similarly we obtain a similar result to Theorem 3.9.

Theorem 3.10. Under the assumption of Theorem 3.7 or Theorem 3.8, there exist
a polynomial semigroup G and a homeomorphism h on K(f) such that

h(J(f)) = J(G).
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Figure 5. Enlargements of some parts of Figure 4. The biggest
component of the left figure contains −1.445963 + 0.013021i and the
biggest component of the right figure contains 1.

Figure 6. The filled-in Julia sets of fc(z) = z2 + c, where c =
−0.124444 + 0.711111i (left) and c = −1.051111 + 0.060000i (right).

3.2. Filled-in Julia sets and symbol spaces.
Let W be the unbounded component of C\G−1(G(c3)). Its boundary ∂W contains
c3. Then a conformal map Ψ with the following properties exists: There exists
r > 1 such that Ψ : C \ Dr → W is a conformal isomorphism, where Dr = {z ∈
C : |z| < r}. For a positive number t with 0 ≤ t < 1, R(t) = Ψ({z ∈ C : arg(z) =
2πt and |z| > r}) is called the external ray with angle t for K(f).

Let R be the intersection of the external ray that passes through f(c3) and C\U .
Two of four rays f−1(R) have a limit point c3 (see Figure 7). The set Ψ−1(f−1(R))
consists of four half-lines extended from ∂Dr with adjacent angles π/2 (see Figure
8). There are three invariant half-lines extended from the unit circle under the
map z 7→ z4 and their angles are 0, 1/3 and 2/3. At least two of three invariant

half-lines do not overlap with Ψ−1(f−1(R)). Let R̃1 be the intersection of one of

these invariant half-lines and C \ Dr. Let R1 be the image of R̃1 under Ψ. We
extend R1 to become the invariant ray under f . Let R0 be a component of f−1(R1)
which satisfies that R1 ∩ R0 6= ∅. Then R1 ⊂ R0 and f maps J0 = R0 \ R1 onto
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c3

UA UB

c1 c2

U

f (c3)

f−1(R)
R

K(f1)
K(f2)

RA1

RA2

RB1

RB2

Figure 7. Some external rays. Dashed lines are f−1(R).

J1 = R1 ∩ U . Inductively, let R−n be a component of f−1(R−(n−1)) which satisfies
that R−(n−1)∩R−n 6= ∅. Then R−(n−1) ⊂ R−n and f maps J−n onto J−(n−1), where

J−n =

{
R−n \R−(n−1) if n ≥ 0,

R1 ∩ U if n = −1.

The limit of this construction is the f -invariant ray

R∞ =
∞⋃

n=0

R−n = R1 ∪
( ∞⋃

n=0

J−n

)
.

Lemma 3.11 ([43, Lemma 5.2]). Let F be a rational map and let X denote the
closure of the union of the postcritical set and possible rotation domains of F . If
γ : (−∞, 0] → Ĉ \X is a curve with

F nk(γ(−∞,−k]) = γ(−∞, 0]

for all positive integers k, then the limit

lim
t→−∞

γ(t)

exists and is a repelling or parabolic periodic point of F whose period divides n.

We can apply Lemma 3.11 to R∞ \R1 =
⋃∞

n=0 J−n, setting γ such that

γ(−(k + 1),−k] = J−k

for all positive integers k. Therefore R∞ lands at a repelling or parabolic fixed point
of f . If R∞ lands at a point on K(f1), then we describe R∞ with RA1. Similarly
if R∞ lands at a point on K(f2), then we describe R∞ with RB1. If the angle
of R1 and f−1(R) is taken into consideration, we can obtain both RA1 and RB1

by choosing R̃1 well. Let RA2 and RB2 be components of f−1(RA1) and f−1(RB1)
which satisfy that RA2 ∩ UA 6= ∅ and RB2 ∩ UB 6= ∅ and differ from RA1 and RB1
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Dr

0

1
3

2
3

Ψ−1(f−1(R))

D

Figure 8. Solid lines are invariant under z 7→ z4 and dashed lines
are Ψ−1(f−1(R)).

respectively. We set VA = U \ (K(f1) ∪RA1) and VB = U \ (K(f2) ∪RB1). Let I1,
I2, I3 and I4 be inverse branches of f−1 such that

I1 : VA → U1, I2 : VA → U2,

I3 : VB → U3, I4 : VB → U4,

where U1 and U2 are components of UA \ (K(f1) ∪ RA1 ∪ RA2). Similarly U3 and
U4 are components of UA \ (K(f2) ∪RB1 ∪RB2).

We define a map Λ : K(f)∗ → Σ as follows: For K in K(f)∗,

[Λ(K)]n =





i if fn(K) ⊂ Ui,

A if fn(K) = K(f1),

B if fn(K) = K(f2),

where i = 1, 2, 3, 4 and n ≥ 0.

Lemma 3.12. The map Λ : K(f)∗ → Σ is continuous.

Proof. For any positive number ε, there exists a positive integer N such that 1/2N <
ε. We take K ∈ K(f)∗ arbitrarily and set s = Λ(K) = (s0, s1, . . . , sN , . . .). We
consider the case that s ∈ Σ∩Σ4 first. By the continuity of f , there exist positive
numbers δ1, . . . , δN such that fk(K[δk]) ⊂ Usk

for k = 1, 2, . . . , N . Let δ be the
minimum value of δk. Then fk(K[δ]) ⊂ Usk

for k = 1, 2, . . . , N . Any component
K ′ of K(f) with dH(K, K ′) < δ satisfies that K ′ ⊂ K[δ] by the definition of
the Hausdorff metric. Moreover any component K ′ ⊂ K[δ] of K(f) satisfies that
Λ(K ′) = (s0, s1, . . . , sN , tN+1, . . .). Therefore if any component K ′ of K(f) satisfies
that dH(K, K ′) < δ, then

ρ(Λ(K), Λ(K ′)) =
∞∑

k=N+1

δ(sk, tk)

2k
≤

∞∑

k=N+1

1

2k
=

1

2N
< ε.
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c3

UA UB
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Kf2

RA1

RA2

RB1

RB2

U2U1
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VB

I2I1
I3
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Figure 9. Inverse branches of f−1.

If sn = A and sn−1 6= A or sn = B and sn−1 6= B, then s is an isolated point in
Σ. Since the corresponding K is also an isolated point in K(f)∗, the map Λ is
continuous at K. ¤

We define a map Λ̃ : Σ → K(f)∗ as follows: For s = (sn) in Σ, if sn = A and

sn−1 6= A, then we define Λ̃(s) as

Λ̃(s) = Is0 ◦ · · · ◦ Isn−1 (K(f1)) .

If sn = B and sn−1 6= B, then we define Λ̃(s) as

Λ̃(s) = Is0 ◦ · · · ◦ Isn−1 (K(f2)) .

If s belongs to Σ4, then there exists a subsequence (sn(l))
∞
l=1 such that sn(l) = 1 or

2 and sn(l)−1 = 3 or 4. We set K
(l)
s = Is0 ◦ · · · ◦ Isn(l)−1

(UA) and then K
(l)
s ⊃ K

(l+1)
s .

We define Λ̃(s) as

Λ̃(s) =
∞⋂

l=1

K(l)
s .

The set
⋂∞

l=1 K
(l)
s is a one-point set since each Ik decreases the Poincaré distance

on VA or VB.

Remark 3.13. We check that Ik decreases the Poincaré distance on VA or VB. For
x and y in VA, let γ be the Poincaré geodesic from x to y in VA . Then there exists
a constant c < 1 such that ∫

I1(γ)

dsVA
≤ c

∫

I1(γ)

dsU1 ,

where dsVA
and dsU1 are the Poincaré metrics on VA and U1 respectively. Let γ′ be

the Poincaré geodesic from I1(x) to I1(y) in VA. Then

distVA
(I1(x), I1(y)) =

∫

γ′
dsVA

≤
∫

I1(γ)

dsVA
,
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where distVA
is the Poincaré distance on VA. Since I1 is conformal,

∫

I1(γ)

dsU1 =

∫

γ

I∗1 (dsU1) =

∫

γ

dsVA
= distVA

(x, y).

Consequently we obtain that

distVA
(I1(x), I1(y)) ≤ c · distVA

(x, y).

Therefore I1 decreases the Poincaré distance on VA. Similarly we can show that I2,
I3 and I4 decrease the Poincaré distance on VA or VB.

Lemma 3.14. The map Λ̃ is the inverse map of Λ.

Proof. We show that Λ ◦ Λ̃ and Λ̃ ◦Λ are the identity maps. Let s = (s0, s1, s2, . . .)

be a point in Σ. If sn = A and sn−1 6= A, then Λ̃(s) = Is0 ◦ · · · ◦ Isn−1(K(f1)). By

definition of Λ̃, we obtain that

fk(Λ̃(s)) =

{
Isk

◦ · · · ◦ Isn−1(K(f1)) ⊂ Usk
if 0 ≤ k ≤ n− 1,

K(f1) if n ≤ k.

Therefore [Λ(Λ̃(s))]k = sk and Λ ◦ Λ̃(s) = s. Similarly if sn = B and sn−1 6= B,

then Λ ◦ Λ̃(s) = s. If s belongs to Σ4, then

fk
(
Λ̃(s)

)
= fk

( ∞⋂

l=1

K(l)
s

)
⊂

∞⋂

l=1

fk
(
K(l)

s

)
⊂ Usk

.

Therefore [Λ(Λ̃(s))]k = sk and Λ ◦ Λ̃(s) = s. Consequently Λ ◦ Λ̃ is the identity

map on Σ. It is clear that Λ̃ ◦ Λ is the identity map on K(f)∗. ¤

Lemma 3.15. The map Λ−1 : Σ → K(f)∗ is continuous.

Proof. For any s = (s0, s1, s2, . . .) in Σ, we set K = Λ−1(s). If sn = A and sn−1 6= A,
then K = Is0 ◦ · · · ◦ Isn−1(K(f1)). Since K is an isolated point in K(f)∗, Λ−1 is
continuous at s. Similarly if sn = B and sn−1 6= B, then Λ−1 is continuous at s.
We take a positive number ε arbitrarily. If s belongs to Σ4, then

Λ−1(s) =
∞⋂

l=1

K(l)
s .

Since K
(l)
s ⊃ K

(l+1)
s and Λ−1(s) is a one-point set, there exists l0 ≥ 1 such that

Λ−1(s) ⊂ K(l0)
s ⊂ Λ−1(s)[ε].

We set δ = 1/2n(l0)−1 and consider a point t in Σ with ρ(s, t) < δ. Then

t = (s0, s1, . . . , snl0
−1, snl0

, tnl0
+1, . . .).

By definition of Λ−1(t), if t belongs to Σ \ Σ4, then

Λ−1(t) ⊂ K(l0)
s ⊂ Λ−1(s)[ε].



46 K. KATAGATA

If t belongs to Σ4, then

Λ−1(t) =
∞⋂

l=1

K
(l)
t .

In this case, it is clear that K
(l)
t = K

(l)
s for l = 1, 2, . . . , l0. Therefore we obtain

that
Λ−1(t) ⊂ K(l0)

s ⊂ Λ−1(s)[ε].

Since Λ−1(s) is a one-point set, for a point t in Σ with ρ(s, t) < δ,

dH(Λ−1(s), Λ−1(t)) = inf{ε′ : Λ−1(t) ⊂ Λ−1(s)[ε′]} < ε.

Therefore Λ−1 is continuous at s. ¤
Lemma 3.16. Two maps F and σ are topologically conjugate via the homeomor-
phism Λ, namely Λ ◦ F = σ ◦ Λ.

Proof. For a point K in K(f)∗, we set Λ(K) = (s0, s1, s2, . . .). Then σ ◦ Λ(K) =
(s1, s2, . . .). On the other hand, Λ ◦ F (K) = Λ(f(K)) = (s1, s2, . . .). Therefore
Λ ◦ F = σ ◦ Λ. ¤

We have completed the proof of Theorem 3.5.

3.3. Other critical configurations.
For a quartic polynomial, the following two cases are also considered. We can
similarly show Theorems 3.7 and 3.8. We assume that the Julia set is disconnected
but not totally disconnected.

Case 1. Let f be a quartic polynomial and let c1, c2 and c3 be finite critical points
of f . We assume that G(c1) = 0 and G(c3) ≥ G(c2) > 0, namely c1 belongs to
K(f) and c2 and c3 belong to A(∞). Moreover we assume that fn(c2) 6= c3 for all
n ≥ 0.

Let U be the bounded component of C \ G−1(G(f(c2))). We assume that UA,
UB and UC are the different bounded components of C \ G−1(G(c2)) such that
c1 ∈ UC . Then UA, UB and UC are proper subsets of U . Furthermore (f |UA

, UA, U)
and (f |UB

, UB, U) are polynomial-like maps of degree one and (f |UC
, UC , U) is a

polynomial-like map of degree two.
Under this situation, we define the kneading sequence (αn)n≥0 of c1 as

αn =





A if fn(c1) ∈ UA,

B if fn(c1) ∈ UB,

C if fn(c1) ∈ UC .

We assume that the kneading sequence of c1 is (CCC · · · ).
Let Σ5 = {1, 2, 3, 4, C}ω be the symbol space on five symbols. We define a subset

Σ of Σ5 as follows: A point s = (sn) belongs to Σ if and only if

(1) If sn = C, then sn+1 = C.
(2) If sn = C and sn−1 6= C, then sn−1 = 1 or 2.
(3) If s ∈ Σ4 = {1, 2, 3, 4}ω, then there exists a subsequence (sn(k))

∞
k=1 such that

sn(k) = 1 or 2 for all k ≥ 1.
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Case 2. Let f be a quartic polynomial and let c1, c2 and c3 be finite critical points
of f such that c1 = c2 6= c3. We assume that G(c1) = 0 and G(c3) > 0, namely c1

belongs to K(f) and c3 belongs to A(∞).
Let U be the bounded component of C \ G−1(G(f(c3))). We assume that UA

and UB are the different bounded components of C \ G−1(G(c3)) such that c1 ∈
UB. Then UA and UB are proper subsets of U . Furthermore (f |UA

, UA, U) is a
polynomial-like map of degree one and (f |UB

, UB, U) is a polynomial-like map of
degree three. We assume that the kneading sequence of c1 is (BBB · · · ).

Let Σ5 = {1, 2, 3, 4, B}ω be the symbol space on five symbols. We define a subset
Σ of Σ5 as follows: A point s = (sn) belongs to Σ if and only if

(1) If sn = B, then sn+1 = B.
(2) If sn = B and sn−1 6= B, then sn−1 = 1.
(3) If s ∈ Σ4 = {1, 2, 3, 4}ω, then there exists a subsequence (sn(k))

∞
k=1 such that

sn(k) = 1 for all k ≥ 1.

3.4. Julia sets of Polynomial Semigroups.

Definition 3.17. A rational semigroup G is a semigroup generated by a family of
non-constant rational functions {g1, g2, . . . , gn, . . .} defined on Ĉ. We denote this
situation by

G = 〈g1, g2, . . . , gn, . . .〉.
A rational semigroup G is called a polynomial semigroup if each g ∈ G is a poly-
nomial.

Definition 3.18. Let G be a rational semigroup. The Fatou set F (G) of G is
defined as

F (G) = {z ∈ Ĉ : G is normal in a neighborhood of z}.
Its complement Ĉ \ F (G) is called the Julia set J(G) of G.

Henceforth, we prove Theorem 3.9. The following theorem on polynomial-like
maps is important.

Theorem 3.19 ([15, 36]). For every polynomial-like map (f, U, V ) of degree d ≥ 2
there exist a polynomial p of degree d, a neighborhood W of K(f) in U and a
quasiconformal map h : W → h(W ) such that

(a) h(K(f)) = K(p),
(b) the complex dilatation µh of h is zero almost everywhere on K(f),
(c) h ◦ f = p ◦ h on W ∩ f−1(W ).

If K(f) is connected, p is unique up to conjugation by affine map.

Under the assumptions of Theorem 3.5, the triples (f1, UA, U) and (f2, UB, U) are
polynomial-like maps of degree two. Furthermore K(f1) and K(f2) are connected.
By Theorem 3.19, there exist polynomials g1 and g2 of degree two with K(g1) ∩
K(g2) = ∅, a neighborhood W1 of K(f1) in UA, a neighborhood W2 of K(f2) in UB

and quasiconformal maps h1 on W1 and h2 on W2 such that h1(K(f1)) = K(g1)
and h2(K(f2)) = K(g2).
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Kg2
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Ũ2
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C \ (Kg2 ∪ R2)
C \ (Kg1 ∪ R1)

R′
1

R′
2

Figure 10. Inverse branches of g−1
1 and g−1

2 .

We define inverse branches Ĩ1 and Ĩ2 of g−1
1 . Since K(g1) is connected, there

exists a conformal map Ψ1 : C \ D → C \K(g1) such that Ψ−1
1 ◦ g1 ◦ Ψ1(z) = z2.

The external ray R1 = Ψ1({z ∈ C : arg(z) = 0 and |z| > 1}) lands at a fixed point
of g1. Let R′

1 be the external ray which satisfies that g1(R
′
1) = R1 and differs from

R1. We replace g2 so that

R1 ∩K(g2) = ∅ and R′
1 ∩K(g2) = ∅.

Then we define inverse branches Ĩ1 and Ĩ2 of g−1
1 as

Ĩ1 : C \ (K(g1) ∪R1) → Ũ1 and Ĩ2 : C \ (K(g1) ∪R1) → Ũ2,

where Ũ1 and Ũ2 are components of C \ (K(g1) ∪R1 ∪R′
1). Similarly, we can take

external rays R2 and R′
2. Then we define inverse branches Ĩ3 and Ĩ4 of g−1

2 as

Ĩ3 : C \ (K(g2) ∪R2) → Ũ3 and Ĩ4 : C \ (K(g2) ∪R2) → Ũ4,

where Ũ3 and Ũ4 components of C \ (K(g2) ∪R2 ∪R′
2).

For a point s in Σ, we set Ks = Λ−1(s) and Js = ∂Ks. Then Ks is a component
of K(f) and Js is a component of J(f). For a point s = (s0, s1, s2, . . .) in Σ\Σ4, we
define a quasiconformal map hs on a neighborhood of Ks. Let n be a non-negative
number with sn = A and sn−1 6= A or sn = B and sn−1 6= B. Then hs is defined on
Ws = Iso ◦ · · · ◦ Isn−1(Wi) as

hs = Ĩso ◦ · · · ◦ Ĩsn−1 ◦ hi ◦ fn, where i =

{
1 if sn = A and sn−1 6= A,

2 if sn = B and sn−1 6= B.

We set K̃s = hs(Ks), J̃s = ∂K̃s and G = 〈g1, g2〉. If necessary, we replace g1 and

g2 so that each K̃s is disjoint. Since J̃s = ∂K̃s = hs(∂Ks) = hs(Js) and J(G) is

backward invariant, hs maps Js onto a component J̃s of J(G). By definition, it is
clear that h(A,A,A,...) = h1 and h(B,B,B,...) = h2.
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Next, we define a homeomorphism

h :
⋃

s∈Σ\Σ4

Ks →
⋃

s∈Σ\Σ4

K̃s

as h|Ks = hs.

Remark 3.20. For a point s = (s0, s1, s2, . . .) in Σ ∩ Σ4, a one-point component Ks

of K(f) is characterized by using the Hausdorff topology. We set

t(n) =

{
(s0, s1, . . . , sn−1, A, A, A, . . .) if sn−1 = 3 or 4,

(s0, s1, . . . , sn−1, B, B, B, . . .) if sn−1 = 1 or 2.

Then the sequence {t(n)}∞n=1 belongs to Σ \ Σ4 and t(n) → s as n →∞. Since Λ−1

is continuous,

Ks = Λ−1(s) = lim
n→∞

Λ−1
(
t(n)

)
= lim

n→∞
Kt(n) .

Finally, we extend h homeomorphically on K(f) =
⋃

s∈Σ Ks. For a point s in

Σ ∩ Σ4, we define K̃s = h(Ks) as

h(Ks) = lim
n→∞

h(Kt(n)).

Then h is a homeomorphism between K(f) =
⋃

s∈Σ Ks and
⋃

s∈Σ K̃s.

Lemma 3.21. The Julia set J(G) corresponds with the boundary of
⋃

s∈Σ K̃s.

Proof. Lemma 3.21 follows from the following.

Lemma 3.22 ([22]). If z belongs to J(G) \ E(G), then

O−(z) = J(G),

where O−(z) = {w ∈ Ĉ : there exists g ∈ G such that g(w) = z} is the back-

ward orbit of z and E(G) = {z ∈ Ĉ : O−(z) contains at most two points} is the
exceptional set of G.

By Lemma 3.22,

∂

(⋃
s∈Σ

K̃s

)
=

⋃
s∈Σ

∂K̃s =
⋃
s∈Σ

J̃s =
⋃

s∈Σ\Σ4

J̃s = JG.

¤

We have completed the proof of Theorem 3.9.
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3.5. Topologies of the symbol space.
Theorem 3.5 means that componentwise dynamics of f on K(f) can be simplified
as dynamics of the shift map on Σ. The space (Σ, ρ) is not compact as the following
example shows. The sequence


s(n) = (1, 1, . . . , 1︸ ︷︷ ︸

n-times

, B, B, B, . . . )





∞

n=0

in Σ converges to s = (1, 1, 1, . . . ) but s is not in Σ. Since (Σ, ρ) is not compact,
although the dynamical system (K(f)∗, F ) is conjugate to (Σ, σ) by Theorem 3.5,
many good properties of the symbolic dynamical system are not available. So we
impose a question: Is it possible to introduce a new topology on Σ which makes Σ
compact and reflects the dynamical system (K(f)∗, F ) in a natural way? In this
subsection, we answer this question.

Theorem 3.23. There exists a topology O of Σ such that (Σ,O) is compact,
metrizable, perfect and totally disconnected. Moreover the shift map σ : (Σ,O) →
(Σ,O) is continuous.

Regarding Λ in Theorem 3.5 just as a bijection between the sets K(f)∗ and Σ,
we define G to be the quotient topology of K(f)∗ relative to Λ−1 and the topology
O of Σ as in Theorem 3.23. Then Λ : (K(f)∗,G) → (Σ,O) is a homeomorphism
such that Λ ◦ F = σ ◦ Λ.

Corollary 3.24. The topological space (K(f)∗,G) is compact, metrizable, perfect
and totally disconnected. Moreover F : (K(f)∗,G) → (K(f)∗,G) is continuous.

Known results in general topology.
We introduce some definitions and results in general topology. We refer to [29] and
[37]. Let X be a topological space.

Definition 3.25. The topological space X is sequentially compact if every sequence
of points of X contains a convergent subsequence. The topological space X is
countably compact if every countable open covering of X has a finite subcovering.
The topological space X is a Lindelöf space if every open covering of X has a
countable subcovering.

Theorem 3.26. If X is sequentially compact, then X is countably compact.

Theorem 3.27. If X satisfies the second axiom of countability, then X is a Lin-
delöf space.

Theorem 3.28. The topological space X is compact if and only if X is a countably
compact Lindelöf space.

Definition 3.29. The topological space X is a T1-space if for any distinct points
x and y in X, there exists an open neighborhood U of x such that y 6∈ U . The
topological space X is a T2-space or a Hausdorff space if for any distinct points x
and y in X, there exist open neighborhoods U of x and V of y such that U ∩V = ∅.
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Definition 3.30. A T1-space X is a regular space if for any x in X and any closed
set L with x 6∈ L, there exists open neighborhoods U of x and V of L such that
U ∩ V = ∅.
Definition 3.31. A T1-space X is a normal space if for any closed sets A and B
of X with A ∩ B = ∅, there exists open neighborhoods U of A and V of B such
that U ∩ V = ∅.
Theorem 3.32. Each compact Hausdorff space is normal.

Theorem 3.33. The topological space X satisfying the second axiom of countability
is metrizable if and only if X is a regular space.

Definition 3.34. The topological space X is a 0-dimensional space if there exists
an open basis B of X such that every B ∈ B is open and closed.

Theorem 3.35. Let X be a compact Hausdorff space. The topological space X is
a 0-dimensional space if and only if X is totally disconnected.

Another topology of the symbol space.
We define a topology of Σ. Let k be a non-negative integer. If s = (A, A, A, . . . )

belongs to Σ, then we define a subset N
(k)
s of Σ as

N (k)
s = {s} ∪ {t = (tn) ∈ Σ : tn = 1 or 2 for n ≤ k} .

Similarly, if s = (B, B, B, . . . ) belongs to Σ, then

N (k)
s = {s} ∪ {t = (tn) ∈ Σ : tn = 3 or 4 for n ≤ k} .

If s = (s0, . . . , sl, A, A, A, . . . ) belongs to Σ with sl 6= A, then

N (k)
s = {s} ∪

{
t = (tn) ∈ Σ : tn =

{
sn if n ≤ l,

1 or 2 if l + 1 ≤ n
for n ≤ k

}
.

Similarly, if s = (s0, . . . , sl, B, B, B, . . . ) belongs to Σ with sl 6= B, then

N (k)
s = {s} ∪

{
t = (tn) ∈ Σ : tn =

{
sn if n ≤ l,

3 or 4 if l + 1 ≤ n
for n ≤ k

}
.

Finally, if s = (sn) belongs to Σ ∩ Σ4,

N (k)
s = {t = (tn) ∈ Σ : tn = sn for n ≤ k} .

Then it holds that N
(k+1)
s ⊂ N

(k)
s for all s ∈ Σ and k ≥ 0. Let N (s) = {N (k)

s }∞k=0

and let N = {N (s) : s ∈ Σ}.
Lemma 3.36. The set N is a neighborhood system of Σ.

Proof. Let s be a point in Σ.

(i) If N ∈ N (s), then s ∈ N .
(ii) For N1 and N2 in N (s), there exist non-negative integers k1 and k2 such

that N1 = N
(k1)
s and N2 = N

(k2)
s . Let N3 = N

(k)
s , where k ≥ max{k1, k2}.

Then N3 ∈ N (s) and N3 ⊂ N1 ∩N2.
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(iii) For N in N (s), there exists k ≥ 0 such that N = N
(k)
s . For t ∈ N , we set

N ′ = N
(k)
t . Then N ′ ∈ N (t) and N ′ ⊂ N .

Therefore N is a neighborhood system of Σ. ¤
Then (Σ,O) is a topological space, where O is the topology generated by N .

We obtain immediately the following lemmas.

Lemma 3.37. The topological space (Σ,O) satisfies the first axiom of countability.

Proof. We choose a neighborhood basis of s ∈ Σ as N (s). ¤
Lemma 3.38. The topological space (Σ,O) is a Hausdorff space.

Proof. For distinct points s = (sn) and t = (tn) in Σ, there exist k ≥ 0 such that

sk 6= tk. Let M = N
(k)
s ∈ N (s) and let N = N

(k)
t ∈ N (t). Then M ∩N = ∅. ¤

Lemma 3.39. The topological space (Σ,O) is perfect.

Proof. For any s in Σ and any neighborhood O ∈ O of s, there exists N ∈ N (s)
such that N ⊂ O. It is clear that (O \ {s}) ∩ Σ ⊃ (N \ {s}) ∩ Σ 6= ∅. ¤

We show that (Σ,O) is compact. By Theorems 3.26, 3.27 and 3.28, we need
only to show that (Σ,O) is sequentially compact and satisfies the second axiom of
countability.

Lemma 3.40. The topological space (Σ,O) is sequentially compact.

Proof. Let {s(k) = (s
(k)
n )}∞k=1 ⊂ Σ. We choose a subsequence {s〈α〉}∞α=0 as follows:

Step 0. There exists a subsequence {s(kl)}∞l=1 such that s
(kl)
0 = s0 for l ≥ 1, where

s0 = 1, 2, 3 or 4. Let s〈0〉 be one of s(kl). Then s〈0〉 = (s0, s
〈0〉
1 , s

〈0〉
2 , . . . ). We rewrite

s(kl) as s(k).
Step 1. There exists a subsequence {s(kl)}∞l=1 such that s

(kl)
1 = s1 for l ≥ 1, where

s1 = 1, 2, 3 or 4. Let s〈1〉 be one of s(kl). Then s〈1〉 = (s0, s1, s
〈1〉
2 , s

〈1〉
3 , . . . ). We

rewrite s(kl) as s(k).
Step α. Inductively, we can choose s〈α〉 = (s0, . . . , sα, s

〈α〉
α+1, s

〈α〉
α+2, . . . ).

Let s = (s0, s1, s2 . . . ). If s ∈ Σ, then for a neighborhood O ∈ O of s, there exists

N = N
(α0)
s ∈ N (s) such that N ⊂ O. If α ≥ α0, then s〈α〉 ∈ N ⊂ O. Therefore

s〈α〉 converges to s with respect to O. If s 6∈ Σ, then there exists a unique β ≥ 0
such that

(i) sβ−1 = 3 or 4 and sn = 1 or 2 for β ≤ n,
(ii) sβ−1 = 1 or 2 and sn = 3 or 4 for β ≤ n.

If (i) is the case, let

t =

{
(A, A, A, . . . ) if β = 0,

(s0, . . . , sβ−1, A, A, A, . . . ) if β ≥ 1.

If (ii) is the case, let

t =

{
(B, B, B, . . . ) if β = 0,

(s0, . . . , sβ−1, B, B, B, . . . ) if β ≥ 1.
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Then we can prove that s〈α〉 converges to t with respect to O by the same argument.
Therefore (Σ,O) is sequentially compact. ¤
Lemma 3.41. The topological space (Σ,O) satisfies the second axiom of countabil-
ity.

Proof. Let

B =
⋃

s∈Σ\Σ4

N (s).

First we show that B is an open basis of (Σ,O). It is clear that B ⊂ O. Let
O ∈ O and s = (sn) ∈ O. If s ∈ Σ \Σ4, then there exists M ∈ N (s) ⊂ B such that

s ∈ M ⊂ O by the definition of O. If s ∈ Σ∩Σ4, then there exists N = N
(k)
s ∈ N (s)

such that s ∈ N ⊂ O by the definition of O. However we do not know yet whether
N ∈ B at this stage. Let t = (s0, . . . , sk, tk+1, tk+2, . . . ) ∈ N ∩ (Σ \ Σ4) and let

M = N
(k)
t . Then M ∈ B and, in fact, M = N . Therefore s ∈ M = N ⊂ O.

Consequently B is an open basis of (Σ,O). The countability of B follows from that
of Σ \ Σ4 and N (s). ¤

We obtain the following lemma by Lemmas 3.40 and 3.41.

Lemma 3.42. The topological space (Σ,O) is compact.

By Theorem 3.32, (Σ,O) is normal, in particular (Σ,O) is regular. Therefore we
obtain the following lemma by Theorem 3.33.

Lemma 3.43. The topological space (Σ,O) is metrizable.

Next, we show that (Σ,O) is totally disconnected. By Theorem 3.35, we need
only to show that (Σ,O) is a 0-dimensional space.

Lemma 3.44. Let s ∈ Σ \ Σ4.

(i) If s = (A, A, A, . . . ) or s = (B, B, B, . . . ), then N
(k)
s is open and closed for

k ≥ 0.
(ii) If s = (s0, . . . , sl, A, A, A, . . . ) with sl 6= A or s = (s0, . . . , sl, B, B, B, . . . )

with sl 6= B, then N
(k)
s is open and closed for k ≥ l + 1.

Proof. (i) Let s = (A, A, A, . . . ). We show that N
(k)
s is closed. Let M = Σ \ N

(k)
s .

For a point t = (tn) in M , there exists α ≤ k such that tα 6= 1 or 2. In the case

of “B”, there exists α ≤ k such that tα 6= 3 or 4. Then N
(k)
s ∩ N

(α)
t = ∅ and

N
(α)
t ⊂ M . Therefore M is open and N

(k)
s is closed. The proof of (ii) is similar to

that of (i). ¤
For s = (A, A, A . . . ) or s = (B, B, B . . . ), we set N ′(s) = N (s). For s =

(s0, . . . , sl, A, A, A, . . . ) with sl 6= A or s = (s0, . . . , sl, B, B, B, . . . ) with sl 6= B,

we set N ′(s) = {N (k)
s : k ≥ l + 1}. Let

B′ =
⋃

s∈Σ\Σ4

N ′(s).
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Lemma 3.45. The set B′ is an open basis of (Σ,O).

Proof. The proof is smiler to that of Lemma 3.41. ¤
By Lemmas 3.44 and 3.45, (Σ,O) is a 0-dimensional space. Therefore we obtain

the following lemma by Theorem 3.35.

Lemma 3.46. The topological space (Σ,O) is totally disconnected.

Finally, we show the following lemma.

Lemma 3.47. The shift map σ : (Σ,O) → (Σ,O) is continuous.

Proof. Let s = (s0, s1, s2, . . . ) ∈ Σ. For a neighborhood O ∈ O of σ(s) =

(s1, s2, . . . ), there exists N = N
(k)
σ(s) ∈ N (σ(s)) such that N ⊂ O. We take a neigh-

borhood M = N
(k+1)
s of s. Then σ(M) = N ⊂ O. Therefore σ : (Σ,O) → (Σ,O)

is continuous. ¤
We have completed the proof of Theorem 3.23.

Applications.
The following two theorems are fundamental. See Section ??.

Theorem 3.48. Let g be a rational function of degree greater than one. If z belongs
to J(g), then

J(g) =
∞⋃

k=1

g−k(z).

Theorem 3.49. Let g be a rational function of degree greater than one. Then

J(g) = {repelling periodic point of g}.
We obtain analogies of Theorems 3.48 and 3.49.

Theorem 3.50. Let (Σ,O) be as in Theorem 3.23 and let s be a point in Σ. Then

Σ =
∞⋃

k=1

σ−k(s),

where the closure is taken in (Σ,O).

Proof. Let s = (s0, s1, s2, . . . ) ∈ Σ and let

u =

{
1 or 2 if s0 6= A,

3 or 4 if s0 6= B.

Then (u, s0, s1, s2, . . . ) ∈ σ−1(s). For a point t = (A, A, A, . . . ) in Σ, we consider
the sequence 


s(α) = (1, . . . , 1︸ ︷︷ ︸

α-times

, u, s0, s1, . . . )





∞

α=1

⊂
∞⋃

k=1

σ−k(s).
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Then s(α) converges to t = (A, A, A, . . . ) with respect to O. Next, for a point
t = (t0, t1, . . . , tl, A, A, A, . . . ) in Σ with tl 6= A, we consider the sequence


s(α) = (t0, . . . , tl, 1, . . . , 1︸ ︷︷ ︸

α-times

, u, s0, s1, . . . )





∞

α=1

⊂
∞⋃

k=1

σ−k(s).

Then s(α) converges to t = (t0, t1, . . . , tl, A, A, A, . . . ) with respect to O. In the case
of “B”, we choose “3” instead of “1”. Finally, for a point t = (t0, t1, t2, . . . ) in
Σ ∩ Σ4, we consider the sequence

{
s(α) = (t0, t1, . . . , tα, u, s0, s1, s2, . . . )

}∞
α=1

⊂
∞⋃

k=1

σ−k(s).

Then s(α) converges to t = (t0, t1, t2, . . . ) with respect to O. ¤
Remark 3.51. The closure of the backward orbit of s ∈ Σ under σ does not neces-
sarily coincide with Σ in (Σ, ρ). For example,

(A, A, A, . . . ) 6∈
∞⋃

k=1

σ−k ((B, B, B, . . . )),

where the closure is taken in (Σ, ρ).

Corollary 3.52. Let (K(f)∗,G) be as in Corollary 3.24 and let K ∈ K(f)∗. Then

K(f)∗ =
∞⋃

k=1

F−k(K),

where the closure is taken in (K(f)∗,G).

Theorem 3.53. Let (Σ,O) be as in Theorem 3.23. Then

Σ = {periodic point of σ in Σ},
where the closure is taken in (Σ,O).

Proof. We show that each non-periodic point t in Σ is a limit point of a sequence
of periodic points of Σ. For a point t = (t0, t1, . . . , tl, A, A, A, . . . ) in Σ with tl 6= A,
we consider the sequence


s(α) = (t0, t1, . . . , tl, 1, 1, . . . , 1︸ ︷︷ ︸

α-times

, t0, t1, . . . , tl, 1, 1, . . . , 1︸ ︷︷ ︸
α-times

, . . . )





∞

α=1

of period α + l + 1. Then s(α) converges to t = (t0, t1, . . . , tl, A, A, A, . . . ) with
respect to O. In the case of “B”, we choose “3” instead of “1”. For a non-periodic
point t = (t0, t1, t2, . . . ) in Σ ∩ Σ4, we consider the sequence

{
s(α) = (t0, t1, . . . , tα, t0, t1, . . . , tα, . . . )

}∞
α=β

of period α + 1, where β is a positive integer which satisfies s(β) ∈ Σ. Then s(α)

converges to t = (t0, t1, t2, . . . ) with respect to O. ¤
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Remark 3.54. The closure of the set of all periodic points of Σ does not coincide
with Σ in (Σ, ρ) since t = (t0, t1, . . . , tl, A, A, A, . . . ) with tl 6= A is an isolated point
in (Σ, ρ).

Corollary 3.55. Let (K(f)∗,G) be as in Corollary 3.24. Then

K(f)∗ = {periodic point of F in K(f)∗},
where the closure is taken in (K(f)∗,G).
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