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ABSTRACT. Inequalities on networks have played important roles in the the-
ory of netwoks. We study several famous inequalities on networks such as
Wirtinger’s inequality, Hardy’s inequality, Poincaré-Sobolev’s inequality and
the strong isoperimetric inequality, etc. These inequalities are closely related
to the smallest eigenvalue of weighted discrete Laplacian. We discuss some
relations between these inequalities and the potential-theorerteic magnitude
of the ideal boundary of an infinite network.

1. PROBLEM SETTING

Let X be a countable set of nodes, Y be a countable set of arcs and K be
the node-arc incidence matrix. Assume that the graph G := {X,Y, K} is locally
finite and connected and has no self-loop. For a strictly positive real valued
function r on Y, N := {G, r} is called a network.

Let L(X) be the set of all real valued functions on X, let L*(X) be the set of
all non-negative u € L(X) and let Lo(X) be the set of all u € L(X) with finite
support. We denote by €4 the characteristic function of the subset A of X and
put £, 1= €4 in case A = {z}.

The discrete derivative du and the discrete Laplacian Au(x) of u € L(X) are
defined by

duy) = —r(y)" ) K@ yul),
Mu() = 3 K(wy)ldu(y)]
Denote by the total conductance at z € X by
__ —1
c(x) = Zyey [ K (,9)|r(y) ™
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In case r(y) = 1 on Y, this quantity is equal to the number of the neighboring
nodes of x and is called the degree of x. For x, 2 € X with x # z, the conductance
c(x, z) between x and z is defined by

._ -1
C(.CL’,Z) T Zyeyr<y> ’K($7y)K(27y)|
We set ¢(z,z) = 0 for every x € X. Notice that

Au(z) = —c(x)u(z) + ZzEX c(x, 2)u(z).
The mutual Dirichlet sum D(u,v) of w,v € L(X) is defined by

D(u,v) := Zyey r(y)[du(y)]ldv(y)]

if the sum on the right hand side converges. We call D(u) := D(u, u) the Dirichlet
sum of u and consider the following set of discrete Dirichlet functions:
D(N) :={u € L(X); D(u) < co}.

Let m be a strictly positive real valued function on X and consider the following
inner product:

UV > = ZM m(z)u(z)v(x)
if the sum on the right hand side converges. Let us put for simplicity
ullm = [< w,u>p]" " and  Ly(X;m) i= {u € L(X); [[uflm < oo}

For a nonempty subset B of X (Y resp.) and a function w on X (Y resp.),
denote by w(B) the sum of w(-) on B.

In this paper, we always assume that Ag is a fixed nonempty finite subset of
X such that Ay # X.

We shall study the following conditions related to inequalities on the network
N.
(C.1; m) There exists a constant C; > 0 such that

lul|?2, < C1D(u) for all u € Lo(X).

(C.2; m, Ag) There exists a constant Cy > 0 such that
llu||?2, < CoD(u) for all w e Lo(X; A),
where
Lo(X; Ag) :={u € Lo(X);u=0o0n Ap}.
For simplicity, we introduce the following function
D(u)

on D(N) and consider the following values of extremum problems:

AL inf{xm(u);u € Ly(X)},

m

AD(Ag) = inf{xm(u);u € Lo(X; Ap)}.
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Notice that they are the best possible values of 1/Cy and 1/Cy respectively.
Therefore Conditions (C.1; m) and (C.2; m, Ap) are equivalent to ALY > 0 and
)\%)(AO) > ( respectively.
Clearly Ay < AP (A). In case N is a finite network, we have
AD =0 < X2 (4.

We shall be concerned with the problem when does /\5,%)(140) > 0 imply AW > 0.

We also give some suitable lower bounds for Al and )\g)(AO) by using potential-
theoretic method. Applications of our inequalities to the study of discrete po-
tentials will be given in §5. We shall show in §6 some partial answers to the

existence of optimal solutions for Ay and A} (Ag)-

Remark 1.1. Condition (C.1; m) implies the generalized strong isoperimetric
inequality (GSI):

leall?, < C1D(e4) or m(A) < Cir(0A)

for every nonempty finite subset A of X. Here 0A is the set of y € Y which
connects A and X \ A directly.

In case m = 1 on X and r = 1 on Y, Condition (C.1; m) is known as the
Poincaré-Sobolev’s inequality. In [1], it was proved that the Poincaré-Sobolev’s
inequality is equivalent to the following isoperimetric inequality under the con-
dition that X is of bounded degree, i.e., sup{c(z);z € X} < oc:

(SI) There exists a constant Cy > 0 such that

|A| < Cul0A]

for every nonempty finite subset A of X. Here |A| denotes the cardinality of A.

In case m(x) = ¢(x) on X, it was proved in [17] that the generalized Poincaré-
Sobolev’s inequality (C.1; m) holds if and only if the generalized strong isoperi-
metric inequality (GSI) does.

2. PRELIMINARIES

Lemma 2.1. For every u € D(N), the following inequality holds:
2
D(u) <2 erx c(z)u(z)
Proof. By definition, we have
< -1 [ 2 2]
D) < 2% r) [ Ky ute)
_ 2 2.0 \—1
= 2) | Ky
_ 2
= 2 ZZGX c(x)u(x)”.

We recall the following useful result(cf. Lemma 3 in [21]):
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Lemma 2.2. (Green'sformula) Let u € L(X), f € Lo(X). Then
Dluf) = -3 [Au@)]f@) =~ _[Af@]ulx).
Let us further introduce the following set of functions:
D(N; Ap) :={ue D(N);u=0on Ap}.
Notice that D(INV; Ag) is a Hilbert space with the inner product D(u,v). Denote
by Dy(N;Ag) the closure of Lo(X;Ag) in D(N;Ap). There exist the unique
reproducing kernels §& and g, of Do(N; Ag) and D(N; Ap) respectively, i.e.,
D(u,q:) = wu(z) forallu € Dy(N; Ap),
D(u,g,) = wu(x) forallue D(N;A).
We called g, the Kuramochi kernel of N with pole at x in [13].
We also notice that D(N) is a Hilbert space with the inner product
((u,v))p = D(u,v) + u(zo)v(xo),

where x is a fixed node. We set ||u||p = ((u,u))gQ. The set Do(N) of discrete
Dirichlet potentials is defined as the closure of Ly(X) in D(N).
Recall that N is of parabolic type if the value

d(A,00) :=1inf{D(u);u € Ly(X), u=1o0n A}
vanishes for some nonempty finite subset A of X (cf. [22]). We say that N is
of hyperbolic type if it is not of parabolic type. Notice that N is of parabolic
type if and only if D(N; Ag) = Do(N; Ap). In case N is of hyperbolic type, there
exists a unique reproducing kernel g, of Dy(N), i.e.,

v(x) = D(v,g,) forallv e Dy(N).

We call g, the Green function of N with pole at z. )
For every f € LT(X), let us define potentials Gf, G*f and Gf of f with
respect to the above reproducing kernels g,, g; and g,. For example,

G fle) =) G:(2)f(2).

We see that Gf and G*f are superharmonic on X \ Ay if they have finite values
at some x € X \ Ap. Similarly if Gf(z) < oo for some x € X, then Gf is
superharmonic on X (cf. [23]).

For mutually disjoint nonempty subsets A and B of X, let us consider two
values of convex programs:

do(A,B) = inf{D(u);u € Lo(X), u=00n A, v =1on B},
d(A,B) = inf{D(u);u € L(X), u=0o0n A, w=1on B}.
Notice that d(A, B) = d(B, A). We have by Theorem 2.1 in [14]
Lemma 2.3. Let z € X \ Ay. Then
do(Ao, {7}) = 1/g;(x) and  d(Ao, {z}) = 1/gu().
We have by Theorem 2.2 in [16]
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Lemma 2.4. Let A be a finite subset of X. For any exhaustion {N,} (N, =<
X, Y, >) of N with A C Xy, d(A, X\ X,,) — d(A, ) as n — 0.

We shall prove

Theorem 2.1. If N is an infinite network which is of parabolic type, then {g.(x);x €
X} is unbounded.

Proof. Suppose that {g.(x);x € X} is bounded, i.e., there exists a constant
C' > 0 such that 0 < g,(x) < C for all z € X \ Ap. Let {N,}(N, =< X,,,Y,, >)
be an exhaustion of N with Ay C X; and take a sequence {x,} of nodes such
that x, € X \ X,,. Then

1 1

— < -
C 7 Gz, ()
for every n. It follows from Lemma 2.4 that

= d(Ao, {z,}) < d(Ao, X \ X)

1
A > — .
d( o,OO)_C>0

Thus N is of hyperbolic type. This is a contradiction. O]

3. RELATIONS BETWEEN AWy AND A2 (Ag)
Theorem 3.1. Let Ay and Aj, be nonempty finite subsets of X such that A C
Ay. Then AP (Ap) > 0 if and only if AR (Ag) > 0.

Proof. Since Ay C Ay, we have )\7(7%)(146) < M2(Ap), so that the only if part

holds. Assume that A (A)) = 0. There exists a sequence {f,} in Lo(X;A})
such that || f,|l» = 1 and D(f,) — 0 as n — oo. Since f,(x) = 0 on Aj, we see
that {f,} converges pointwise to 0. Let v, = f, — u, with w, := f,e4,. Then
vy, € Lo(X; Ap) and

2 2
=1- 1
foall, =13 mla)fu()?
as n — 00. Since N is locally finite, Af,, and Awu,, converge pointwise to 0. Here

we remark
Auy,(z) = Zzer oz, 2) fo().

Since Ay is a finite set, we have by Lemma 2.2
= D(fn)+2Zx€AD[Afn<x)]fn(x) _Z

as n — 0o, and hence

[Aup ()] fn(x) — 0

TE€AQ

D(”ﬂ)

— 0.
Va7,

A2 (4p) <
O

Corollary 3.1. If there exists a nonempty finite subset Ay of X such that A2 (Ag) >
0, then )\g)(A) > 0 for all nonempty finite subset A of X.
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Lemma 3.1. Let my,my € LT(X) satisfy 0 < my < my. Then (C.1; ms) and
(C.2; ma, Ag) imply (C.1; my) and (C.2; my, Ag) respectively.

Theorem 3.2. Assume that m is bounded. Then (C.1; 1) implies (C.2; m, Ap).

Proof. There exists M > 0 such that m(z) < M for all x € X. If Condition
(C.1; 1) holds, then there exists C; > 0 such that

lully, < Mllully < MCLD(u)
for every u € Lo(X). Since Lo(X; Ag) C Lo(X), we have x,,(u) > 1/(MCy) >0
for all u € Ly(X; Ap), and hence Aﬁ?)(AO) >1/(MCy) > 0. O

Theorem 3.3. If N is of parabolic type, then AW = 0.

Proof. Suppose that AP >0 and let A be a nonempty finite subset of X. Since
N is of parabolic type, there exists a sequence { f,} in Lo(X) such that f,(x) =1
on A and D(f,) — 0 as n — oo. Then,

0 <m(A)A, < AP fall7, < D(fa) — 0
as n — oo. This is a contradiction. [

Theorem 3.4. Assume that N is of hyperbolic type. Then Condition (C.2;
m, Ag) is equivalent to Condition (C.1; m).

Proof. Since A% < )\g)(Ao) in general, we see that Condition (C.1; m) implies
Condition (C.2; m, Ag). Assume that Condition (C.2; m, Ag) holds. By Theorem
3.1, we may assume that Ay is a singleton {a}. For any u € Lo(X), let f =

u—ug,. Then f € Lo(X;{a}). Let Cy = 1/A%({a}). By our assumption, we

have
> @) f(2)’ < CD(f)
Since N is of hyperbolic type, we can find a constant Cy > 0 depending only on
a such that
[v(a)] < Co[D(v)]"?
for all v € Lo(X) by Theorem 3.2 in [19]. We have
D(ug,) = u(a)*D(g,) < C3D(u)c(a),
so that
D(f) < 2(D(u) + D(ue,)) < 2(1 + Cge(a))D(u).
It follows that

=
I

2= 3 m(@)f(@) + mia)u(a)
< CoD(f) + m(a) D(u)
< 21+ Cie(a))Cy 4+ m(a)C31D(u).

Thus we have
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By Lemma 2.3, we have

Theorem 3.5. For every b € X \ Ay, the following inequality holds:

A2 (4y) < do(Ao, {b}) _ 1

m(b) m(b)g, (b)
Proof. For every u € Lo(X; Ag) with u(b) = 1, we have
D(u) _ D(u)
A (Ao) < xom(u) = < :
’ [ullZ, = m(b)

which gives our first inequality. m

By Theorem 3.5, we have
Theorem 3.6. If {m(z)g:(x);x € X} is unbounded, then /\7(73)(/10) = 0.

Corollary 3.2. Assume that m(z) > 1 on X \ Ao and that N is an infinite
network. If N is of parabolic type, then AR (Ag) = 0.

Proof. Since m(z) > 1 on X \ Ay, we have by Theorem 3.5
1 1

)\53) Ap) < = -
)= 560 T 50
for any x € X \ Ap. Since {g,(z);x € X} is unbounded by Theorem 2.1, it

follows that A% (Ag) = 0. 0

We can not omit the assumption that N is an infinite network in Corollary
3.2, since )\g)(Ag) > 0 if N is a finite network.

4. ESTIMATION OF A% AND /\5,%)(140)

Hereafter we always assume that X \ A is connected, i.e., any two nodes in
X \ Ap can be connected by a path whose nodes are in X \ A.

For a finite subnetwork N’ =< X', Y’ > of N such that Ay C X’ and X"\ Ay
is connected, we consider the following extremum problems:

AD(NY = inf{xm(u);u € L(X),u=0o0n X\ X'},
AR (Ao N') 1= inf{xn(u);u € D(N'; Ao)},

where we set for simplicity
D(N'; Ag) :=={u e L(X);u=0o0n Ag U (X \ X)}.
As in [18], we have

Lemma 4.1. Let N' =< X', Y' > be a finite subnetwork of N with Ay C X'.
There ezists a unique v € D(N'; Ag) which has the following properties:

(1) A (Ao NY) = xm (),

(2) Au'(z) = =XD(Ag; N)ym(x)u'(z) on X'\ A.

(3) u'(x) >0 on X'\ Ay and ||v||,, = 1.
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Lemma 4.2. Let N' =< X' Y’ > be a finite subnetwork of N. There exists a
unique u' € L(X) which has the following properties:

(1) u'(x)=0o0n X\ X',

(2) M (N') = X (),

(3) Au'(z) = = XD(N)ym(x)u' (x) on X',

m

(4) u'(z) >0 on X" and |v||,, = 1.
For each x € X'\ Ay, there exists a unique function g € D(N’; Ay) such that
w(z) = D(u,gY") for allu € D(N'; Ay),

since D(N'; Ag) is a Hilbert space. We see that AgY = —e, on X'\ Ay and
0< g (2) on X.

Lemma 4.3. Let N' =< X')Y' > be a finite subnetwork of N with Ag C X'
and let v’ be the function obtained in Lemma 4.1. Then, for every x € X'\ Ag

u(2) = MDA N) Y (@m(z)u(2)

Proof. By the above observation, we have by Lemma 2.2
u(x) = D(,q,")
_ ~N’ /
= =Y @A)
= MDA N)Y " g (e)m(2)(2).

zeX gaj

For every f € LT(X), we put

A fa) =3 @),

zeX

Corollary 4.1. The following relation holds:

! < AP (A4 N') < — ! .
max{GN'm(z);z € X'} min{GN¥'m(z);z € X'}

Corollary 4.2. The following relation holds:

1 1
< X245 N < .
m(X)max{gN;ze X'} =™ (Ao V') < m(X")min{g"";z € X'}

As in Urakawal[20], we have

Lemma 4.4. Let N' =< X', Y’ > be a finite subnetwork of N such that Ag C X’
and assume that X'\ Ay is connected. If f € D(N'; Ag) satisfies the condition
that f(x) >0 on X'\ Ao, then the following inequality holds:

min _Af(x) o~ ! (2) . AT/ max —Af(l’)
{—m(x)f(x)’ € X'\ Ao} < A7 (Ag; N') < {m

W;x e X'\ Ap}.
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Proof. Let v/ be the function obtained in Lemma 4.1. Then
u'(z) = 0 onAyU(X\X'), v(z) >0 on X"\ Ay,
Au'(z) = —AD(Ag; N)m(z)u'(z) on X'\ Ap.
For z € X'\ Ay, we have

A (A N') = —T;(é)u;fg)
_ A ¥
m(x)f(z) — m(z)f(x)u(z)

Here ¢(x) = v/ (z)Af(x)— f(z)Au/(x). Since f,u' € Ly(X) and f(x) =/ (z) =0
on AU (X \ X’), we have by Lemma 2.2

Za:eX’\Aow@) - erx¢(x)

= Y @A@Y @A)
= D/, f)— D(f,u')=0.
Namely we see that either ¢(z) = 0 on X or ¢(z) changes its sign on X'\ Ay.
If () =0 on X, then
—Af(x) _ —Ad(x)
m(z)f(x) — m(z)u(z)
for every x € X'\ Ag. Otherwise, there exists a,b € X'\ Aj such that ¥ (a) >
0, ¥(b) < 0. Since f(x)u'(x) >0 on X"\ Ay, it follows that

—Af(a) —Af(b)
m(a)f(a) m(b) f(b)

= M2 (Ag; N')

< AP (4g; N') <
L]

Remark 4.1. Let us take f = GN'm in the this lemma. Then Af(z) = —m(x)
on X'\ Ay, so that we have

) 1

mln{#
GN'm(x)
This is the same inequality as in Corollary 4.1.

Let {N,}(N,, =< X,,Y, >) be an exhaustion of N such that Ay C X; and
Xi \ Ap is connected. Then we have

o€ X'\ Agl < AP (Ag; N') < max{%;x € X'\ Ap}.
GN'm(x)

Theorem 4.1. The sequence {)\%)(Nn)} converges to A\ .

Proof. We have

AG S AQ (Nair) < AL (V).
For any € > 0 we can find u € Lo(X) such that x,,(u) < A% + . There exists
no such that v = 0 on X \ X, for all n > ny. Thus )\%)(Nn) < Xm(u) for all
n > ng. Hence {)\ﬁ)(Nn)} converges to AW. O
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Similarly we can prove
Theorem 4.2. The sequence {)\,(73)(140; N,)} converges to )\(mZ)(AO).

Let f];(n) = 95/ and é*(")f(x) = éN'f(x) with N/ = N,,. We have by the
minimum principle that g;i(") < g;("“) < g; on X. Notice that
lim 3" () = §;(2)
for each z € X.

Theorem 4.3. If the G*-potential G*m of m is bounded on X, then
1

A2 (Ap) > - >
sup{G*m(z);x € X}

0.

Proof. Let {N,}(N, =< X, Y, >) be an exhaustion of N with Ay C X;. Since
G*Mm(z) < G*m(x) and v := sup{G*m(z);x € X} < oo by our assumption,
we have by Corollary 4.1

1
~
for all n, and our inequality follows from Theorem 4.2. n

A2 (Ag;N,) > = >0

Corollary 4.3. Assume that N is of parabolic type and let m be a strictly posi-
tie real valued function on X such that m(X) < co. Let m(z) :=1 on Ay and
m(z) == m(z)/gi(z) forx € X \ Ag. Then A\, (Ao) > 0.

Proof. Since gi(z) < gi(x), we have

for all x € X'\ A,. O
Similarly we have by Corollary 4.2

Theorem 4.4. If {g}(x);x € X} is bounded and if m(X) < oo, then
1

(2)
() 2 S s ) € X

0.

By taking the Green function gg(cn) of N,, in place of f];(”), we can prove

Theorem 4.5. [f the Green potential Gm of m is bounded on X, then (C.1; m)
holds and

0.

1
)\(1) > >
" 7 sup{Gm(z);x € X}

Theorem 4.6. If {g.(x);x € X} is bounded and if m(X) < oo, then

1
m(X)sup{g.(x);z € X} -

A > 0.
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5. DIRICHLET POTENTIALS

As applications of our inequalities, we shall study the relations between Dy(N)
and Lo(X;m).

Theorem 5.1. Assume that Condition (C.1; m) holds. Then Do(N) C Lo(X;m)
and there exists C; > 0 such that
lullf, < C1D(u)
for every uw € Dy(N).
Proof. Let u € Dy(N). There exists a sequence {f,} in Lo(X) such that ||u —

follp — 0 as n — oo. It follows that D(f,) — D(u) as n — oo and {f,}
converges pointwise to u. By Condition (C.1; m), there exists C; > 0 such that

2
By Fatou’s lemma,
2 i 2
ZmEX m(z)u(x)® < hr{rilogf Z:BGX m(zx) fn(x).
Thus we have
2
S m@u()? < CiD(),
so that u € Ly(X;m). O
Similarly we have
Theorem 5.2. If Condition (C.2; m, Ay) holds, then Dy(N;Ay) C Lo(X;m)
and ||ul|2, < NP (Ag)D(u) for every u € Do(N; Ap).
Lemma 5.1. Assume that there exists a constant C' > 0 such that c(z) < Cm/(x)

on X. Then Ly(X;m) C Do(N).

Proof. Let u € Ly(X;m) and take and an exhaustion {N,}( N, =< X,,,Y,, >)
of N. Define f,, by f.(z) := u(x) for x € X, and f,(x) :=0for z € X \ X,,. We
have by Lemma 2.1

Dlu—fa) < 23 el@)(u(@) = fu(@))’
< 2C ZaceX\Xn m(z)u(x)* — 0,

as n — o00. Since f, € Lo(X) and {f,} converges pointwise to u, we see that
lu — fullp — 0 as n — oo, and therefore u € Dy(N). O

By Theorem 5.1 and Lemma 5.1, we have

Theorem 5.3. Assume that Condition (C.1; m) holds and that there exists a
constant C > 0 such that c¢(x) < Cm(x) on X. Then Do(N) = Lo(X;m).

Corollary 5.1. Assume that m(z) =1 on X, r(y) =1 on Y and sup{c(z);x €
X} < o00. Then Do(N) = Lo(X;m).
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Corollary 5.2. Assume that N is of hyperbolic type. If Condition (C.1; m)
holds, then g, € Lo(X;m) for all x € X and {m(z)g,(x);z € X} is bounded.

Proof. Since g, € Dy(N), we see by Theorem 5.1 that g, € Lo(X;m) for all
z € X and there exists C; > 0 such that

m(@)go(x)? <Y mlx)ge(2)* < C1D(g:) = Crga().

Therefore {m(z)g.(x); x € X} is bounded. O
Denote by Do(N) the closure of Ly(X) in D(N) with respect to the norm:
[uf?, = D(w) + Jull3,.

Since ||u||p < |u|p, We see that Do(N) C Dy(N).
Theorem 5.4. If Condition (C.1; m) holds, then Do(N) = Do(N).

Proof. Let u € Dy(IN). There exists a sequence {f,} in Lo(X) such that ||ju —
fnllp — 0 as n — oo. By Theorem 5.1, there exists C; > 0 such that

lu = falln < C1D(u— fa) < Cillu— fullp

for all n. Therefore || f, — ullm — 0 as n — oo, and hence [u — fu[p — 0 as
n — oo. Namely u € Dy(N). O

Remark 5.1. We see easily that Ao = inf{xm(u);u € Dy(N)}. If Condition
(C.1; m) holds, then

A = inf{y,,(u);u € Dy(N)}.
Similarly, if Condition (C.2; m, Ag) holds, then
AD(Ag) = inf{xm(u);u € Do(N; Ap)}.

6. EXISTENCE OF AN OPTIMAL SOLUTION
First we shall give a characterization of A&?(Ao).

Theorem 6.1. Let A(Ag) be the set of A > 0 for which there exists u € L(X)
satisfying the following condition:

(E) Au+dmu=0on X\ Ag,u=0 on Ay and u >0 on X \ Ay.

Then sup A(Ag) < AEf)(AO).

Proof. Let A € A(Ap) and u be a function which satisfies condition (E). Consider
an exhaustion {N,}(N, =< X,,Y, >) be of N such that Ay C X;. There
exists v, € L(X) such that Av, + )\g)(Ao; N,)mv, =0 on X, \ Ap, v, =0 on
AgU (X \ X,) and v, > 0 on X,, \ Ap. Put

Pi= (A= A2 (Ag; No)) Y m(z)u(x)v, ().

wEXn\AO
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Since Au + Amu = 0 on X, \ Ay, we have by Lemma 2.2
P = — Z:cexn Un () Z ) [Av, (2)]
- erx un( Z 7)[Avn(2)]

B erX\X A ()]
= D(vp,u) — D(u,v,) — ZmeX\Xn u(z)[Av,(x)]

- _Z X\ X z)[Avn(2)].

For each boundary node x of X, \ Ay, i.e., x ¢ X,, \ Ap and there exists y € Y,
such that K (z,y) # 0, we have

Avy,(z) = ZzeXn\Ao c(x, z)v,(2) > 0.

Therefore P < 0. Since u(z)v,(z) > 0 on X,, \ Ag, we obtain \ < )\g)(AO; N,).
Our assertion follows from Theorem 4.1. O]

Similarly we have

Theorem 6.2. Let A be the set of A\ > 0 for which there exists uw € L(X) such
that Au+ Admu =0 on X andu >0 on X. Then sup A < AL,

This result was proved in [6] in case r = 1 and m = 1.

Now we shall be concerned with the existence of an optimal solution for AW
and A2 (Ap) in Do(N) and Dy(INV; Ag) respectively (cf. Remark 5.1).

Theorem 6.3. If Condition (C.1; m) holds, then there exists a nonconstant
u* € L(X) such that u*(x) >0 on X and

Aut(z) = = ADm(z)u*(z) on X.
Proof. Let {N,}(N,, =< X,,,Y,, >) be an exhaustion of N and let u} be the
function determined in Lemma 4.2. Take zp € X; and put v, (x) := u)(x)/u’ (o).
Then v, (x9) = 1, Xm(vn) = xm(ul) = A (N,), vp(x) >0 on X, and Av,(z) =
—)\,(n,ll)(Nn)m(x)vn(x) on X,. For any x € X, = # xg, there exists ng such that
x € X, for all n > ngy. Since v, is superharmonic on X,,, we see by Harnak’s
inequality (cf. Theorem 2.3 in [24]) that there exists a constant a(zg,z) > 0
(depending only on zy and z) such that

vn(z) < alxg, x)v,(T0) = (g, T)

for all n > ny. Namely {v,(x)} is bounded for every z € X. By using the
diagonal process, we may assume that {v,} converges pointwise to a function
u* € L(X). Clearly u* € LT(X) and u*(z9) = 1. It follows from Theorem 4.1
that

Au*(x) = =A\Pm(2)u*(x)
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for all z € X. Since Au*(x) < 0 on X, we see by the minimum principle that
u*(z) > 0 on X. By the relation Au*(xy) = —Ag)m(xo)u*(xo) < 0, we see that
u* is nonconstant. O

Corollary 6.1. If AW > 0, then max A = AW
Similarly to Theorem 6.3, we have

Theorem 6.4. If Condition (C.2; m, Ay) holds, then there exists i € L(X) such
that w(z) =0 on Ay, u(z) >0 on X \ Ay and

Ai(z) = -\ (Ag)ym(z)u(z) on X.
Corollary 6.2. If A (Ag) > 0, then max A(Ay) = A (Ao).

Theorem 6.5. Assume that A > 0 and that u* € Do(N) satisfies the differ-
ence equation:
Aut(z) = = A\Dm(z)u*(z) on X.

Then Xopm(u*) = AL

Proof. There exists a sequence {f,} in Lo(X) such that ||[u* — f,||p — 0 as
n — oo.

ANt = fulls, < D' = fu) =0

as n — 00, so that {f,} converges weakly to u* both in Lo(X;m) and Dy(N).
By our assumption, we have D(u*, f,) = AN < w*, fu >, and hence D(u*) =
N =
Theorem 6.6. Assume that the Poincaré-Sobolev inequality, or Condition (C.1;
1)) holds. If m(X) < oo, then )\g)(Ao) € A(Ap) and there exists € Do(N; Ap)
which satisfies )\5721)(/10) = Xm(@), u(x) >0 on X \ Ay, and

At(z) = = XD (Ag)ym(x)i(x) on X \ Ap.

Proof. By Theorem 3.2, A&7 (Ag) > 0. Let {N, }(N, =< X,,, Y, >) be an exhaus-
tion of N such that Ag C X; and let u,, be the function determined in Lemma
4.1. By the Poincaré-Sobolev inequality, there exists C; > 0 such that

Z:BGX u,(2)* < C1D(uy,)

for all n. Since A% (Ao; Np) = D(uy,) and {Ag)(Ao;Nn)} converges to )\g)(AO)
by Theorem 4.1, we see that {D(u,)} is bounded. It follows that there exists
M'" > 0 such that |u,(z)] < M’ on X for all n. By using the diagonal process,
we may assume that {u,} converges pointwise to a function a € L(X). It follows
that @ € LT(X), |a(x)] < M’ on X and

At(z) = = XD (Ag)ym(x)i(x)
on X \ Ag. We see by Lemma 2.2 that

D(@,un) = AP (Ag) < 11,y > -
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Since ||uy||lm = 1, {u,(z)} is uniformly bounded and m(X) < oo, it follows from
the Lebegue’s dominated convergence theorem that

lm <y, @ >,= lim Y m(@)ua(@)i(e) = i}, = 1.

n—oo

Since {D(uy)} is bounded and u,, € Lo(X) converges pointwise to u(x), we see
that {u,} converges weakly to @ € Dy(N), so that D(u,, @) — D(u) as n — oc.

Thus we have D(a) = AR (Ap). By the minimum principle, we see that 4 > 0 on
X\ Ap. O

Remark 6.1. Theorem 6.6 does not hold in general if we replace the condition
A > 0 by )\7(7%)(140) > 0. This was shown in [11].
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